首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secretory IgA (sIgA) Abs are polymeric Igs comprised of two or more IgA monomers joined together at their C termini and covalently associated with a 70-kDa glycoprotein called secretory component. As the predominant Ig type in gastrointestinal sections, sIgA Abs are centrally important in adaptive immunity to enteropathogenic bacteria, viruses, and toxins. In this study, we demonstrate that sIgA Abs may also function in innate defense against ricin, a naturally occurring, galactose-specific plant lectin with extremely potent shiga toxin-like enzymatic activity. In lectin blot overlay assays, we found that ricin bound to secretory component and the H chain of human IgA, and this binding was inhibited by the addition of excess galactose. The toxin also recognized IgM (albeit with less affinity than to IgA), but not IgG. Ricin bound to both human IgA1 and IgA2, primarily via N-linked oligosaccharide side chains. At 100-fold molar excess concentration, sIgA (but not IgG) Abs inhibited ricin attachment to the apical surfaces of polarized intestinal epithelial cells grown in culture. sIgA Abs also visibly reduced toxin binding to the luminal surfaces of human duodenum in tissue section overlay assays. We conclude that sIgA Abs in mucosal secretions may serve as receptor analogues for ricin, thereby reducing the effective dose of toxin capable of gaining access to glycolipid and glycoprotein receptors on epithelial cell surfaces.  相似文献   

2.
In contrast to numerous studies of female genital tract secretions, the molecular properties of Abs and the magnitude of humoral responses in human male genital tract secretions to naturally occurring Ags and to mucosal and systemic immunizations have not been extensively investigated. Therefore, seminal plasma (SP) collected from healthy individuals was analyzed with respect to Ig levels, their isotypes, molecular forms of IgA, and for the presence of Abs to naturally occurring Ags, or induced by systemic or mucosal immunizations with viral and bacterial vaccines. The results indicated that in SP, IgG and not IgA, is the dominant Ig isotype, and that IgM is present at low levels. IgA is represented by secretory IgA, polymeric IgA, and monomeric IgA. In contrast to the female genital tract secretions in which IgA2 occurs in slight excess, the distribution of IgA subclasses in SP resembles that in plasma with a pronounced preponderance of IgA1. The IgG subclass profiles in SP are also similar to those in serum. Thus, SP is an external secretion that shares common features with both typical external secretions and plasma. Specifically, SP contains naturally occurring secretory IgA Abs to environmental Ags of microbial origin and to an orally administered bacterial vaccine, and plasma-derived IgG Abs to systemically injected vaccines. Therefore, both mucosal and systemic immunization with various types of Ags can induce humoral responses in SP. These findings should be considered in immunization strategies to induce humoral responses against sexually transmitted infections, including HIV-1.  相似文献   

3.
IgA knockout mice (IgA-/-) were generated by gene targeting and were used to determine the role of IgA in protection against mucosal infection by influenza and the value of immunization for preferential induction of secretory IgA. Aerosol challenge of naive IgA-/- mice and their wild-type IgA+/+ littermates with sublethal and lethal doses of influenza virus resulted in similar levels of pulmonary virus infection and mortality. Intranasal and i.p. immunization with influenza vaccine plus cholera toxin/cholera toxin B induced significant mucosal and serum influenza hemagglutinin-specific IgA Abs in IgA+/+ (but not IgA-/-) mice as well as IgG and IgM Abs in both IgA-/- and IgA+/+ mice; both exhibited similar levels of pulmonary and nasal virus replication and mortality following a lethal influenza virus challenge. Monoclonal anti-hemagglutinin IgG1, IgG2a, IgM, and polymeric IgA Abs were equally effective in preventing influenza virus infection in IgA-/- mice. These results indicate that IgA is not required for prevention of influenza virus infection and disease. Indeed, while mucosal immunization for selective induction of IgA against influenza may constitute a useful approach for control of influenza and other respiratory viral infections, strategies that stimulate other Igs in addition may be more desirable.  相似文献   

4.
Both IgG and secretory IgA Abs in mucosal secretions have been implicated in blocking the earliest events in HIV-1 transit across epithelial barriers, although the mechanisms by which this occurs remain largely unknown. In this study, we report the production and characterization of a human rIgA(2) mAb that carries the V regions of IgG1 b12, a potent and broadly neutralizing anti-gp120 Ab which has been shown to protect macaques against vaginal simian/HIV challenge. Monomeric, dimeric, polymeric, and secretory IgA(2) derivatives of b12 reacted with gp120 and neutralized CCR5- and CXCR4-tropic strains of HIV-1 in vitro. With respect to the protective effects of these Abs at mucosal surfaces, we demonstrated that IgG1 b12 and IgA(2) b12 inhibited the transfer of cell-free HIV-1 from ME-180 cells, a human cervical epithelial cell line, as well as Caco-2 cells, a human colonic epithelial cell line, to human PBMCs. Inhibition of viral transfer was due to the ability of b12 to block both viral attachment to and uptake by epithelial cells. These data demonstrate that IgG and IgA MAbs directed against a highly conserved epitope on gp120 can interfere with the earliest steps in HIV-1 transmission across mucosal surfaces, and reveal a possible mechanism by which b12 protects the vaginal mucosal against viral challenge in vivo.  相似文献   

5.
The two exotoxins A and B produced by Clostridium difficile are responsible for antibiotic-associated enterocolitis in human and animals. When added apically to human colonic carcinoma-derived T84 cell monolayers, toxin A, but not toxin B, abolished the transepithelial electrical resistance and altered the morphological integrity. Apical addition of suboptimal concentration of toxin A made the cell monolayer sensitive to toxin B. Both toxins induced drastic and rapid epithelial alterations when applied basolaterally with a complete disorganization of tight junctions and vacuolization of the cells. Toxin A-specific IgG2a from hybridoma PCG-4 added apically with toxin A alone or in combination with toxin B abolished the toxin-induced epithelial alterations for up to 8 h. The Ab neutralized basolateral toxin A for 4 h, but not the mixture of the two toxins. Using an identical Ab:Ag ratio, we found that recombinant polymeric IgA (IgAd/p) with the same Fv fragments extended protection against toxin A for at least 24 h in both compartments. In contrast, the recombinant monomeric IgA counterpart behaved as the PCG-4 IgG2a Ab. The direct comparison between different Ig isotype and molecular forms, but of unique specificity, demonstrates that IgAd/p Ab is more efficient in neutralizing toxin A than monomeric IgG and IgA. We conclude that immune protection against C. difficile toxins requires toxin A-specific secretory Abs in the intestinal lumen and IgAd/p specific for both toxins in the lamina propria.  相似文献   

6.
M cells represent the primary route by which mucosal Ags are transported across the intestinal epithelium and delivered to underlying gut-associated lymphoid tissues. In rodents and rabbits, Peyer's patch M cells selectively bind and endocytose secretory IgA (SIgA) Abs. Neither the nature of the M cell IgR nor the domains of SIgA involved in this interaction are known. Using a mouse ligated ileal loop assay, we found that monoclonal IgA Abs with or without secretory component, but not IgG or IgM Abs, bound to the apical surfaces of Peyer's patch M cells, indicating that the receptor is specific for the IgA isotype. Human serum IgA and colostral SIgA also bound to mouse M cells. The asialoglycoprotein receptor or other lectin-like receptors were not detected on the apical surfaces of M cells. We used recombinant human IgA1 and human IgA2 Abs and domain swapped IgA/IgG chimeras to determine that both domains Calpha1 and Calpha2 are required for IgA adherence to mouse Peyer's patch M cells. This distinguishes the M cell IgA receptor from CD89 (FcalphaI), which binds domains Calpha2-Calpha3. Finally, we observed by immunofluorescence microscopy that some M cells in the human ileum are coated with IgA. Together these data suggest that mouse, and possibly human, M cells express an IgA-specific receptor on their apical surfaces that mediates the transepithelial transport of SIgA from the intestinal lumen to underlying gut-associated organized lymphoid tissues.  相似文献   

7.
Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization and mortality in young children. Protective therapy options are limited. Currently, palivizumab, a monoclonal IgG1 antibody, is the only licensed drug for RSV prophylaxis, although other IgG antibody candidates are being evaluated. However, at the respiratory mucosa, IgA antibodies are most abundant and act as the first line of defense against invading pathogens. Therefore, it would be logical to explore the potential of recombinant human IgA antibodies to protect against viral respiratory infection, but very little research on the topic has been published. Moreover, it is unknown whether human antibodies of the IgA isotype are better suited than those of the IgG isotype as antiviral drugs to combat respiratory infections. To address this, we generated various human IgA antibody formats of palivizumab and motavizumab, two well-characterized human IgG1 anti-RSV antibodies. We evaluated their efficacy to prevent RSV infection in vitro and in vivo and found similar, but somewhat decreased efficacy for different IgA subclasses and formats. Thus, reformatting palivizumab or motavizumab into IgA reduces the antiviral potency of either antibody. Moreover, our results indicate that the efficacy of intranasal IgA prophylaxis against RSV infection in human FcαRI transgenic mice is independent of Fc receptor expression.  相似文献   

8.
IgA is the most abundantly produced Ab isotype in humans, but its potential as immunotherapeutic reagent has hardly been explored. In this study, we describe anti-tumor mechanisms of mouse/human chimeric IgA Abs against the epidermal growth factor receptor (EGF-R). EGF-R Abs of IgG isotype are currently approved for the treatment of colon or head and neck cancers. As expected, the human IgG1, IgA(1), and IgA(2) variants of the 225 Ab demonstrated similar binding to EGF-R. Furthermore, IgA Abs were as effective as IgG in mediating direct effector mechanisms such as blockade of EGF binding, inhibition of EGF-R phosphorylation, and induction of growth inhibition. None of the three variants induced complement-mediated lysis. Human IgG1 effectively recruited MNC for ADCC, but activated PMN only weakly, whereas both IgA isoforms proved to be effective in triggering neutrophils. Interestingly, the IgA(2) isoform was significantly superior to its IgA(1) counterpart in recruiting PMN as effector cells. Because neutrophils constitute the most abundant effector cell population in human blood, this enhanced neutrophil recruitment lead to increased killing of EGF-R expressing tumor cells in whole blood assays. This killing was further enhanced when blood from G-CSF-primed donors was compared with healthy donor blood. Together, these data suggest EGF-R Abs of human IgA isotype to bear promise for therapeutic use in cancer.  相似文献   

9.
Abs of the secretory Ig (SIg) system reinforce numerous innate defense mechanisms to protect the mucosal surfaces against microbial penetration. SIgs are generated by a unique cooperation between two distinct cell types: plasma cells that produce polymers of IgA or IgM (collectively called pIgs) and polymeric Ig receptor (pIgR)-expressing secretory epithelial cells that mediate export of the pIgs to the lumen. Apical delivery of SIgs occurs by cleavage of the pIgR to release its extracellular part as a pIg-bound secretory component, whereas free secretory components are derived from an unoccupied receptor. The joining chain (J chain) is crucial in pIg/SIg formation because it serves to polymerize Igs and endows them with a binding site for the pIgR. In this study, we show that the J chain from divergent tetrapods including mammals, birds, and amphibians efficiently induced polymerization of human IgA, whereas the J chain from nurse shark (a lower vertebrate) did not. Correctly assembled polymers showed high affinity to human pIgR. Sequence analysis of the J chain identified two regions, conserved only in tetrapods, which by mutational analysis were found essential for pIgA-pIgR complexing. Furthermore, we isolated and characterized pIgR from the amphibian Xenopus laevis and demonstrated that its pIg binding domain showed high affinity to human pIgA. These results showed that the functional site of interaction between pIgR, J chain and Ig H chains is conserved in these species and suggests that SIgs originated in an ancestor common to tetrapods.  相似文献   

10.
The effect of immunoglobulins on the activity of dextransucrase purified from Streptococcus mutans strain HS-6 is described. When human salivary immunoglobulin A (IgA) or colostral IgA, either natured or denatured, was incubated with dextransucrase, the rate of the dextran synthesis was markedly accelerated, whereas human serum IgA or IgG neither accelerated nor inhibited the enzyme activity. The results suggest that a portion unique for secretory IgA, the secretory component, might be related to the enzyme acceleration. On the other hand, specific rabbit antiserum against the dextransucrase inhibited completely dextran synthesis by the enzyme.  相似文献   

11.
Both innate immunity and acquired immunity are involved in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The induction of Abs that neutralize the virus has been described, and certain Abs against endemic coronaviruses may cross-react with SARS-CoV-2. Detailed mechanisms to protect against the pandemic of SARS-CoV-2 remain unresolved. We previously reported that IgG Fc-binding protein (Fcγbp), a unique, large molecular weight, and mucin-like secretory Fc receptor protein, secreted from goblet cells of human small and large intestine, mediates the transportation of serum IgG onto the mucosal surface. In this review, we show that mucous bronchial gland cells and some goblet cells are immunoreactive for Fcγbp. Fcγbp traps the cross-reactive (both neutralizing and non-neutralizing) IgG bound to the virus and can consequently eliminate the virus from the mucosal surface to decrease viral loads. Fcγbp can also suppress immune overreaction by interfering with Fc-binding by macrophages and competing with complement fixation. Fcγbp secreted from mucin-producing cells of the airway functions as an important anti-infection mucosal defense. The Fcγbp-mediated mechanism can be a key factor in explaining why SARS-CoV-2 is less infective/lethal in children, and may also be involved in the unique Ab response, recurrent infection, and effects of serum therapy and vaccination.  相似文献   

12.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

13.
Secretory immunoglobulin A (IgA) is known to play an important role in the mucosal defense against a variety of pathogens. Although the role of IgA antibodies during sexual transmission of HIV is not clear, HIV-specific IgA antibodies have been detected in various mucosal secretions of HIV-infected individuals. Using a monoclonal antibody against human IgA, we established an ELISA system to detect anti-HIV p24 IgA antibodies in sera and saliva. We have analyzed the levels of anti-HIV p24 IgG and IgA antibodies in sera and saliva of 107 and 119 adults, respectively, with HIV infection at different clinical stages, and in the sera of 13 infants born to HIV-infected mothers. The level of anti-HIV p24 IgA antibodies was lower in sera and higher in saliva as compared to that of anti-HIV p24 IgG antibodies. Where the percentage of HIV-specific serum antibody-positive cases decreased with disease progression, that of saliva antibody-positive cases increased in AIDS patients. Among the 13 infants born to HIV-infected mothers, 7 infants were HIV-p24-specific serum IgA positive. These sera were negative for anti-HIV p24 secretory IgA, suggesting that some infants develop their own immune responses against HIV infection. Thus, the detection of HIV-specific IgA antibodies, especially in saliva, could be a simple and reliable test for the diagnosis of HIV infection.  相似文献   

14.
The immunoglobulins IgA, IgG, IgG(T) and IgM were measured in uterine secretions from mares with normal uterine defense capability against bacterial contamination, and in mares with lowered resistance. Samples were collected for analysis at two stages of estrus and two stages of diestrus. All mares were then challenged with a pathogenic culture of Streptococci inoculated into the uterus. The immunoglobulins were quantitated on a similar schedule post-inoculation. Generally higher amounts of IgA, IgG and IgG(T) were found in the uterine secretions of mares which had an imparied resistance to endometritis than in mares with an efficient defense mechanisms. IgM was not detected in enough samples to suggest any differences.  相似文献   

15.
Dimeric IgA Abs contribute significantly to the humoral part of the mucosal immune system. However, their potential as immunotherapeutic agent has hardly been explored. In this article, we describe the production, purification, and functional evaluation of recombinant dimeric IgA against the epidermal growth factor receptor. Human joining chain-containing IgA was produced by nonadherent Chinese hamster ovarian (CHO)-K1 cells under serum-free conditions. Purification by anti-human κ and anti-His-tag affinity, as well as size exclusion chromatography, resulted in a homogenous preparation of highly pure IgA dimers. Functional studies demonstrated dimeric IgA to be at least as effective as monomeric IgA in triggering Ab-dependent cellular cytotoxicity by isolated monocytes or polymorphonuclear cell and in human whole-blood assays. Importantly, dimeric IgA was more effective in F(ab)-mediated killing mechanisms, such as inhibition of ligand binding, receptor downmodulation, and growth inhibition. Furthermore, only dimeric but not monomeric IgA or IgG was directionally transported by the polymeric Ig receptor through an epithelial cell monolayer. Together, these studies demonstrate that recombinant dimeric IgA Abs recruit a distinct repertoire of effector functions compared with monomeric IgA or IgG1 Abs.  相似文献   

16.
In the present study, we demonstrate that breast milk of 66% and 83% of HIV-seronegative and seropositive women, respectively, contains natural Abs of the secretory IgA and IgG isotypes directed against the CCR5 coreceptor for R5-tropic strains of HIV-1. Abs to CCR5 were affinity purified on a matrix to which a synthetic peptide corresponding to the second extracellular loop of CCR5 had been coupled. The purified Abs bound to the CCR5 peptide in a dose-dependent fashion and to both native CCR5 expressed by Chinese hamster ovary cells transfected with CCR5 gene, macrophages, and immature dendritic cells. Although the avidity differed, the amount of anti-CCR5 Abs did not significantly differ between breast milk of HIV-seropositive and -seronegative women. Purified anti-CCR5 Abs inhibited up to 75% infection of macrophages and dendritic cells with HIV(BaL) and HIV(JR-CSF). Our observations provide evidence for a role of natural Abs to CCR5 in breast milk in controlling transmissibility of HIV through breastfeeding.  相似文献   

17.
Although often considered to be ineffective against intracellular bacteria, Abs, in the absence of lymphocytes, have been shown previously to protect SCID mice from lethal infection by the obligate intracellular bacterium Ehrlichia chaffeensis, even when administered well after infection has been established. To identify characteristics of Abs that are critical for host defense during this intracellular infection, a panel of Ehrlichia-specific mAbs was generated and analyzed. Among 100 Abs recovered, 39 recognized an amino-terminal hypervariable region of an outer membrane protein (OMP), demonstrating that the OMPs are both antigenically variable and immunodominant. A subset of 16 representative OMP-specific Abs was further examined to identify characteristics that were essential for in vivo efficacy. The highly effective Abs recognized a linear epitope within the first hypervariable region of OMP-1g. Only IgG were found to be effective, and among the effective IgG, the following hierarchy was observed: IgG2a > IgG3 = IgG2b. The most striking characteristics of the highly effective Abs were their picomolar binding affinities and long binding t(1/2). Thus, although epitope recognition and isotype use may contribute to efficacy, high affinity may be a critical characteristic of Abs that can act effectively during this intracellular bacterial infection.  相似文献   

18.
Intraepithelial cell neutralization of HIV-1 replication by IgA   总被引:3,自引:0,他引:3  
HIV is transmitted sexually through mucosal surfaces where IgA Abs are the first line of immune defense. In this study, we used paired IgA and IgG mAbs against HIV gp160 to study intraepithelial cell neutralization and inhibition of HIV replication. African green monkey kidney cells, Vero C1008, polarizable epithelial cells transfected to express the polymeric Ig receptor (pIgR), were transfected with HIV proviral DNA, and intracellular neutralization mediated by the mAbs was assessed. D47A and D19A IgA, which neutralized HIV in a conventional assay, potently inhibited intracellular HIV replication as assessed by infecting HeLa-CD4-long terminal repeat/beta-galactosidase cells (human cervical carcinoma cell line) and CEMx174 cells (human T cell line) with apical supernatant, basolateral medium, and cell lysate from transfected cells. D47A also inhibited the production of virus as assessed by direct assay of p24. In contrast, D47 and D19 IgG, sharing the same V regions, but which were not transcytosed by the pIgR, did not inhibit intracellular HIV replication, nor did D47A and D19A IgA in pIgR- cells, incapable of transcytosing IgA. Confocal immunofluorescence microscopy showed prominent colocalization of HIV protein and D47A, in agreement with the intracellular neutralization data. D10A, which did not neutralize HIV in the conventional assay, and irrelevant IgA did not show intracellular neutralization or colocalization. Control studies with two kinds of conditioned medium confirmed that HIV neutralization had indeed occurred inside the cells. Thus, during its transcytosis through epithelial cells, HIV-specific IgA can neutralize HIV replication.  相似文献   

19.
We have investigated the consequence of lack of IgA on host immunity using a murine model of allergic lung inflammation. Mice with a targeted disruption of the alpha-switch region and 5' H chain gene (IgA(-/-) mice), which lack total IgA, developed significantly reduced pulmonary inflammation with fewer inflammatory cells in lung tissue and bronchoalveolar lavage fluids, as well as reduced levels of total and IgG1 OVA-specific Abs and decreased IL-4 and IL-5 in bronchoalveolar lavage fluids compared with IgA(+/+) controls, following allergen sensitization and challenge. This defect was attributable to fewer B cells in the lungs of IgA(-/-) mice. Polymeric IgR-deficient (pIgR(-/-)) mice, which lack the receptor that transports polymeric IgA across the mucosal epithelium where it is cleaved to form secretory IgA, were used to assess the contribution of secretory IgA vs total IgA in the induction of allergic lung inflammation. pIgR(-/-) and pIgR(+/+) mice had comparable levels of inflammation, demonstrating that IgA bound to secretory component is not necessary for the development of allergic lung inflammation, although this does not necessarily rule out a role for transudated IgA in lung secretions because of "mucosal leakiness" in these mice. The results indicate that Ag-specific B cells are required at mucosal surfaces for induction of inflammation and likely function as major APCs in the lung for soluble protein Ags.  相似文献   

20.
Fc receptors for IgG expressed on macrophages and NK cells are important mediators of opsonophagocytosis and Ab-dependent cell-mediated cytotoxicity. Phagocyte-mediated opsonophagocytosis is pivotal for protection against bacteria, but its importance in recovery from infection with intracellular pathogens is unclear. We have now investigated the role of opsonophagocytosis in protection against lethal influenza virus infection by using FcR gamma(-/-) mice. Absence of the FcR gamma-chain did not affect the expression of IFN-gamma and IL-10 in the lungs and spleens after intranasal immunization with an influenza subunit vaccine. Titers of serum and respiratory Abs of the IgM, IgG1, IgG2a, and IgA isotypes in FcR gamma(-/-) mice were similar to levels seen in FcR gamma(+/+) mice. Nevertheless, FcR gamma(-/-) mice were highly susceptible to influenza infection, even in the presence of anti-influenza Abs from immune FcR gamma(+/+) mice. NK cells were not necessary for the observed Ab-mediated viral clearance, but macrophages were found to be capable of actively ingesting opsonized virus particles. We conclude that Fc receptor-mediated phagocytosis plays a pivotal role in clearance of respiratory virus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号