首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

2.
Interneurons of the supratrigeminal nucleus, transmitting effects from the sensory and motor branches of the trigeminal nerve to motoneurons of the muscles of mastication were investigated. Two groups of interneurons with different functional connections were found. The first group (A) contains neurons excited during stimulation of the sensory branches and the motor nerve to the digastric muscle (A1), neurons excited during stimulation of sensory branches and high-threshold afferents of the motor nerve to the masseter muscle (A2), and neurons excited only by low-threshold afferents of the motor nerve to the masseter muscle (A3). Neurons of the second group (B) were activated only by sensory fibers of the trigeminal nerve. It is postulated that interneurons of group A transmit inhibitory effects to motoneurons of antagonist muscles of the lower jaw. Group B interneurons participate in the transmission of excitatory influences to motoneurons of the digastric muscle.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 150–157, March–April, 1972.  相似文献   

3.
Neural controlling mechanisms between the digastric (jaw-opening) and masseter (jaw-closing) muscles were studied in the cat. High threshold afferent impulses from the anterior belly of the digastric muscle to masseteric montoneurons in the trigeminal motor nucleus induced an EPSP-IPSP sequence of potentials with long latency, and high threshold afferent impulses from the masseter muscle also exerted a similar effect on digastric motoneurons in the same nucleus innervating the anterior belly of the digastric muscle. These results suggest that reciprocal inhibition via Ia interneurons as observed between the flexor and extensor muscles in the spinal cord does not exist between the digastric and masseter muscles in the cat. However, the respective motoneurons innervating the masseter and digastric muscles receive inputs of early excitation-late inhibition via high threshold afferent nerve fibers from each antagonistic muscle. As such, since EPSPs preceding IPSPs are recognized, these high threshold afferent impulses may exert not only a reciprocal inhibitory effect, but also a synchronous excitatory or inhibitory effect on the antagonistic motoneurons.  相似文献   

4.
A morphometric analysis of the masseteric motoneuron pool of the trigeminal motor nucleus was performed in the rat using horseradish peroxidase as a marker. Thick (40 microns) cryosections and thin (7 microns) Paraplast sections were compared. Two types of motoneurons related to the masseter muscle were observed. Small motoneurons, which had a high nuclear index, were found interspersed between large motoneurons, which had more cytoplasm. Evidence is provided that the small trigeminal motoneurons are gamma neurons that innervate the intrafusal muscle fibers of the masseteric muscle spindles.  相似文献   

5.
We studied the antidromic and synaptic potentials evoked from 32 digastric-muscle motoneurons by stimulation of the motor nerve to this muscle, different branches of the trigeminal nerve, and the mesencephalic trigeminal nucleus. Antidromic potentials appeared after 1.1 msec and lasted about 2.0 msec. Stimulation of the infraorbital, lingual, and inferior alveolar nerves led to development of excitatory postsynaptic potentials (EPSP) and action potentials in the motoneurons. The antidromically and synaptically evoked action potentials of the digastric-nerve motoneurons were characterized by weak after-effects. We were able to record EPSP and action potentials in two of the motoneurons investigated in response to stimulation of the mesencephalic trigeminal nucleus, the latent period being 1.3 msec. This indicates the existence of a polysynaptic connection between the mesencephalic-nucleus neurons and the digastric-muscle motoneurons. Eight digastric-muscle motoneurons exhibited inhibitory postsynaptic potentials (IPSP), which were evoked by activation of the afferent fibers of the antagonistic muscle (m. masseter). The data obtained indicate the presence of reciprocal relationships between the motoneurons of the antagonistic muscles that participate in the act of mastication.A. A. Bogomol'ts Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 52–57, January–February, 1971.  相似文献   

6.
目的为了定位向咬肌运动神经元投射的最后一级运动前神经元在脑干内的分布。方法注射麦芽凝集素结合的辣根过氧化物酶(WGA-HRP)至咬肌神经逆行跨突触追踪,然后通过免疫组织化学方法显示了该类神经元。结果这类神经元分布在双侧三叉上核(Vsup)、三叉神经感觉主核背侧部(Vpdm)、小细胞网状结构(PCR)和三叉神经脊束核吻侧亚核背侧部(Vodm),以及对侧三叉神经运动核(Vmo)。数量上,Vsup,特别是注射侧Vsup中,标记的神经元数量最多;其他核团内,双侧标记的神经元的数量无明显差别。结论一侧咬肌运动神经元直接接受脑干双侧多个区域调控。  相似文献   

7.
Membrane potentials and action potentials evoked by antidromic and direct stimulation were investigated in motoneurons of the trigeminal nucleus in rats innervating the masseter muscle. This motor nucleus was shown to contain cell populations with high and low membrane potentials. The responses of cells of the first group had shorter latent periods of their antidromic action potentials, a longer spike duration, and a lower amplitude and shorter duration of after-hyperpolarization than responses of cells of the second group, and the input resistance of their membrane also is lower. The bimodal character of distribution of electrophysiological parameters of motoneurons in the trigeminal nucleus indicates that "fast" and "slow" fibers of the masseter muscles may be innervated by different types of nerve cells.N. A. Semashko Moscow Medical Stomatological Institute. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 270–274, May–June, 1981.  相似文献   

8.
The essential elements controlling trigeminal motoneurons during feeding lie between the trigeminal and facial motor nuclei. These include populations of neurons in the medial reticular formation and pre-motoneurons in the lateral brainstem that reorganize to generate various patterns. Orofacial sensory feedback, antidromic firing in spindle afferents and intrinsic properties of motoneurons also contribute to the final masticatory motor output.  相似文献   

9.
The masseter muscle is involved in the complex and coordinated oromotor behaviors such as mastication during wakefulness. The masseter electromyographic (EMG) activity decreases but does not disappear completely during sleep: the EMG activity is generally of low level and inhomogeneous for the duration, amplitude and intervals. The decreased excitability of the masseter motoneurons can be determined by neural substrates for NREM and REM sleep. The masseter EMG activity is increased in association with the level of arousal fluctuations within either sleep state. In addition, there are some motor events such as REM twitches, swallowing and rhythmic masticatory muscle activity (RMMA), whose generation might involve the additional activation of specific neural circuits. Sleep bruxism (SB) is characterized by exaggerated occurrence of RMMA. In SB, the rhythmic activation of the masseter muscle can reflect the rhythmic motor inputs to motoneurons through, at least in part, common neural circuits for generating masticatory rhythm under the facilitatory influences of transient arousals. However, it remains elusive as to which neural circuits determine the genesis of sleep bruxism. Based on the available knowledge on the masseter EMG activity during sleep, this review presents that the variety of the masseter EMG phenotypes during sleep can result from the combinations of the quantitative, spatial and temporal neural factors eventually sending net facilitatory inputs to trigeminal motoneurons under sleep regulatory systems.  相似文献   

10.
Positive feedback in a brainstem tactile sensorimotor loop   总被引:8,自引:0,他引:8  
Nguyen QT  Kleinfeld D 《Neuron》2005,45(3):447-457
The trigeminal loop in the brainstem comprises the innermost level of sensorimotor feedback in the rat vibrissa system. Anatomy suggests that this loop relays tactile information from the vibrissae to the motoneurons that control vibrissa movement. We demonstrate, using in vitro and in vivo recordings, that the trigeminal loop consists of excitatory pathways from vibrissa sensory inputs to vibrissa motoneurons in the facial nucleus. We further show that the trigeminal loop implements a rapidly depressing reflex that provides positive sensory feedback to the vibrissa musculature during simulated whisking and contact. On the basis of these findings, we propose that the trigeminal loop provides an enhancement of vibrissa muscle tone upon contact during active touch.  相似文献   

11.
To evaluate whether sex differences in the proportions of fibers of different phenotypes in the masseter muscle might be the result of differences in the behavior of their motoneurons, we studied the firing patterns of masseter motoneurons in adult male and female rabbits. Activity in individual motoneurons was determined from high spatial resolution EMG recordings made during cortically evoked rhythmic activation of the masticatory muscles. Although some motoneurons could be said to fire according to slow-tonic or fast-phasic patterns, most did not. In both sexes a substantial range of median firing rates and median firing durations was found. In adult males, masseter motoneurons fired more rapidly than those recorded from adult females. No significant sex differences in motoneuron firing duration were found. These results are consistent with the hypothesis that androgen-induced differences in rabbit masseter muscle fiber phenotype are a reflection of differences in motoneuron firing rate. Whether this effect of androgen is directly upon the motoneurons or is the result of a response of muscle fibers to androgen remains to be investigated.  相似文献   

12.
We studied the postsynaptic potentials evoked from 76 trigeminal motoneurons by stimulation of the motor (MI) and somatosensory (SI) cortex in the ipsilateral and contralateral hemispheres of the cat. Stimulation of these cortical regions evoked primarily inhibitory postsynaptic potentials (PSP) in the motoneuron of the masseter muscle, but we also observed excitatory PSP and mixed reactions of the EPSP/IPSP type. The average IPSP latent period for the motoneurons of the masseter on stimulation of the ipsilateral cortex was 6.1±0.3 msec, while that on stimulation of the contralateral cortex was 5.2±0.4 msec; the corresponding figures for the EPSP were 7.6±0.5 and 4.5±0.3 msec respectively. Corticofugal impulses evoked only EPSP and action potentials in the motoneurons of the digastric muscle (m. digastricus). The latent period of the EPSP was 7.6 msec when evoked by afferent impulses from the ipsilateral cortex and 5.4 msec when evoked by pulses from the contralateral cortex. The duration of the PSP ranged from 25 to 30 msec. Postsynaptic potentials developed in the motoneurons studied when the cortex was stimulated with a single stimulus. An increase in the number of stimuli in the series led to a rise in the PSP amplitude and a reduction in the latent periods. When the cortex was stimulated with a series of pulses (lasting 1.0 msec), the IPSP were prolonged by appearance of a late slow component. We have hypothesized that activation of the trigeminal motoneurons by corticofugal impulsation is effected through a polysynaptic pathway; each functional group of motoneurons is activated in the same manner by the ipsilateral and contralateral cortex. The excitation of the digastric motoneurons and inhibition of the masseter motoneurons indicates reciprocal cortical control of their activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 512–519, September–October, 1971.  相似文献   

13.
Young adult albino rats of Wistar strain were used for the present study. 0.5 to 15 microliters of 20-50% of horseradish peroxidase (HRP) were injected into each individual muscle of mastication to label neurons in the trigeminal motor nucleus (TMON) for light microscopic study. The results reveal that: (1) Many HRP-labeled, multipolar neurons are observed in the motor nucleus in each jaw-closing muscle (JCM) with less in each the jaw-opening muscle (JOM). (2) The motor neurons innervating each masticatory muscle in the motor nucleus show a somatotopic arrangement: (a) those innervating the temporalis muscle are located in the medial and dorsomedial parts; (b) those innervating the masseter muscle are located in the intermediate and lateral; (c) those innervating the medial and lateral pterygoid muscles are located in the lateral, ventrolateral and ventromedial parts, respectively; and (d) those innervating the mylohyoid and the anterior belly of the digastric muscles are located in the most ventromedial part of the caudal one-third of the nucleus. Axons of most masticatory motor neurons run ventrolaterally in between the motor and the chief sensory nuclei of the trigeminal nerve. However, those of the mylohyoid and anterior belly of the digastric muscles ascend dorsally to the dorsal aspect of the caudal nucleus and then turn ventrolaterally to join the motor root of the trigeminal nerve. Furthermore, the dendrites of the motor neuron of JCM converge dorsocaudally to the supratrigeminal region. The diameters of neurons of each JCM display a bimodal distribution. However, an unimodal distribution is present in the motor neurons from each JCM. It is suggested that the motor nucleus innervating the JCM is comprised of comprised of alpha- and gamma-motor neurons. It, thus, may provide a neural basis for the regulation of the muscle tone and biting force.  相似文献   

14.
Rabies virus pathogenesis was studied in a mouse model by inoculation of the masseter muscle. At different intervals, the masseter muscle, trigeminal ganglia, and brain were analyzed for virus-specific RNA with a polymerase chain reaction assay, which revealed that as early as 18 h postinfection (p.i.), virus-specific RNA was present in the trigeminal ganglia, and at 24 h p.i., viral RNA was identified in the brain stem. Analysis of the masseter muscle demonstrated virus at 1 h p.i. but no virus-specific RNA between 6 and 30 h p.i., indicating that virus invaded the nerve ending directly, without prior replication in the muscle. At 36 h p.i., viral RNA was detected again in the masseter muscle. Selective amplification of plus- and minus-strand RNA isolated from the masseter muscle at 96 h p.i. revealed that the majority of the rabies virus-specific RNA was in the positive sense, suggesting virus replication in muscle tissue during late stages of infection.  相似文献   

15.
Postsynaptic potentials of motoneurons in the facial nerve nucleus, evoked by stimulation of the cranial nerves (trigeminal, hypoglossal, facial) and of the sensomotor cortex were investigated in cats anesthetized with chloralose and pentobarbital. Two functionally opposite groups of motoneurons were found to exist in the facial nucleus. Stimulation of the afferent nerves and cortex evoked the appearance of EPSPs in the first of these groups and IPSPs in the second. The latency and duration of the PSPs indicate that afferent and corticofugal impulses reach the facial motoneurons along polysynaptic pathways. Interneurons on which wide convergence of influences travelling along afferent fibers and of the cortex, were found in the region of the facial nucleus. The possible neuronal pathways concerned with the transmission of afferent and corticofugal impulses to the facial motoneurons are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.4, No.4, pp. 391–400, July–August, 1972.  相似文献   

16.
Unilateral electrolytic lesions were made in the left-side facial motor nucleus (FMNu) of six Sprague-Dawley rats at 35 days of age in order to correlate craniofacial sequelae with changed motoneuron function. Experimental and control rats were killed at 22, 32, 42, and 52 days postoperatively to provide muscle weight, brain histology, and dry skull preparations for analyses. Dissection, muscle weight, motoneuron count, and osteometric data revealed that lesion-side facial and masticatory muscles were affected by the lesions. Paired t-tests indicated that significant differences existed between weights of experimental lesion- and nonlesion-side anterior digastric, temporalis, masseteric complex, and medial pterygoid muscles, numbers of facial and trigeminal motoneurons, and several skeletal dimensions of the skull. Basi-cranial dimensions of experimental animals were least affected by the lesion, whereas zygomatic arch, dorsal facial region, and mandibular condyle dimensions were most affected. Statistical analyses also detected significant differences between experimental and control groups for several skeletal dimensions of the skull. Data indicated that damage to the trigeminal motor nucleus (TMNu) was secondary to the primary lesion in the FMNu. Motoneurons within the facial and trigeminal neuromuscular complexes (FNC and TNC) play an important role in craniofacial growth and development.  相似文献   

17.
Abstract Whereas basic features of post-axotomy muscle reinnervation have been extensively studied in rats, little is known about axonal regrowth and pathfinding in cats. To address the question, adult cats were subjected to facial-facial anastomosis (FFA). First group served to establish optimal parameters for labeling of the zygomatic and buccal facial branches with 1,1'dioctadecyl-3,3,3,'3'-tetramethylindo-carbocyanine perchlorate (DiI) and Fast Blue (FB) placed onto respective transected nerves. The second group of animals underwent identical bilateral labeling 3 months after transection and suture of the right facial nerve. This group served to establish the number of motoneurons, which had branched after surgery and projected into both facial branches. On control side, DiI application onto zygomatico-orbital branch labeled 3883 +/- 598 (mean +/- S.D.) perikarya were confined to the dorsal and intermediate facial subnuclei, meanwhile an application of FB onto the buccal branch labeled 1617 +/- 552 perikarya in the lateral and ventrolateral subnuclei. There were no double-labeled cells. Three months after FFA all retrogradely labeled motoneurons were scattered throughout the entire facial nucleus. To establish the proportion of perikarya, that re-grew multiple axonal branches into both nerves, double-labeled (FB + DiI) motoneurons were counted from digital images. The zygomatico-orbital nerve contained 3311 +/- 430 DiI-labeled whereas the buccal nerve 1500 +/- 442 FB-labeled motoneurons. The occurrence of 311 +/- 103 double-labeled perikarya (DiI+FB) suggested that approximately 6% of all retrogradely labeled motoneurons branched axons into both nerves. I conclude that malfunctioning axonal pathfinding rather than deviant reinnervation contributed to poor recovery of function after FFA in the cat.  相似文献   

18.
The aim of the present study was to determine if excitatory synaptic transmission onto trigeminal motoneurons is subject to a presynaptic modulation by gamma-aminobutyric acid (GABA) via GABA(B) receptor in this system. Whole cell recordings were made from trigeminal motoneurons in longitudinal brain stem slices taken from 8-day-old rats. Monosynaptic excitatory postsynaptic potential (EPSP) activity was evoked by placing bipolar stainless steel electrodes dorsal-caudal to the trigeminal motor nucleus. Bath application of the GABA(B) receptor agonist, baclofen, produced a marked reduction in the mean amplitude and variance of evoked EPSPs and also increased the portion of transmission failures. It also produced a decrease in the frequency, but not in the mean amplitude, of spontaneous miniature EPSPs. Bath application of GABA(B) receptor antagonists 6-hydroxy-saclofen and CGP35348 increased both the amplitude and frequency of miniature EPSP activity. Taken together the above results suggest that the excitatory synaptic inputs onto trigeminal motoneurons are controlled by tonic presynaptic modulation by GABA(B) receptor.  相似文献   

19.
The goal of this surgical protocol is to expose the facial nerve, which innervates the facial musculature, at its exit from the stylomastoid foramen and either cut or crush it to induce peripheral nerve injury. Advantages of this surgery are its simplicity, high reproducibility, and the lack of effect on vital functions or mobility from the subsequent facial paralysis, thus resulting in a relatively mild surgical outcome compared to other nerve injury models. A major advantage of using a cranial nerve injury model is that the motoneurons reside in a relatively homogenous population in the facial motor nucleus in the pons, simplifying the study of the motoneuron cell bodies. Because of the symmetrical nature of facial nerve innervation and the lack of crosstalk between the facial motor nuclei, the operation can be performed unilaterally with the unaxotomized side serving as a paired internal control. A variety of analyses can be performed postoperatively to assess the physiologic response, details of which are beyond the scope of this article. For example, recovery of muscle function can serve as a behavioral marker for reinnervation, or the motoneurons can be quantified to measure cell survival. Additionally, the motoneurons can be accurately captured using laser microdissection for molecular analysis. Because the facial nerve axotomy is minimally invasive and well tolerated, it can be utilized on a wide variety of genetically modified mice. Also, this surgery model can be used to analyze the effectiveness of peripheral nerve injury treatments. Facial nerve injury provides a means for investigating not only motoneurons, but also the responses of the central and peripheral glial microenvironment, immune system, and target musculature. The facial nerve injury model is a widely accepted peripheral nerve injury model that serves as a powerful tool for studying nerve injury and regeneration.  相似文献   

20.
Masseter muscle activity during vestibular stimulation in man   总被引:6,自引:0,他引:6  
Experimental data report that vestibular afferents affect trigeminal system activity. The aim of this work was to evaluate whether static vestibular stimulation affects the excitability of trigeminal motoneurons in man. In order to assess this, voluntary EMG activity of masseter muscles as well as duration and latency of the early and late components of EMG exteroceptive silent period were evaluated while keeping the subject in vertical position and during 20 degrees static tilt. The experiments were performed on ten adult subjects with no orofacial, neurologic and otologic disorders. Each subject sat on a chair, which kept the complex head-jaw-neck-trunk and the limbs securely fixed, in order to minimize any interference due to the activation of somatosensory and proprioceptive afferents from these districts. The subjects were instructed to contract masseter muscles at 25% of their maximum bite force and the isometric force monitoring was used as visual feedback. Exteroceptive silent period (ESP) of masseter EMG was elicited by electrically stimulating the inferior inter-incisal gum. Results showed that static vestibular stimulation induced asymmetrical responses on voluntary masseter muscle activity, which was reduced to 70.3 +/- 16.1% (mean +/- S.D.) of the control value during ipsilateral tilt and increased to 128.8 +/- 13.0% during contralateral tilt. The duration of the early (ESP1) and late (ESP2) silent periods was also affected: during ipsilateral tilt ESP1 and ESP2 duration increased to 130.0 +/- 3.5% and to 122.1 +/- 2.1% of control, respectively; during contralateral tilt it was reduced to 76.8 +/- 1.2% and to 83.0 +/- 1.7% of control, respectively. On the contrary, changes in latencies were not significant. These data evidenced an asymmetrical effect exerted on trigeminal motor activity by static tilt. Since the influence of all receptors which could be activated by static tilt, except that arising from the macular ones, was minimized in this study, it is likely that the observed effects, induced by static tilt on masseter muscle activity, were of macular origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号