首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate (KDG) aldolase then catalyzes the cleavage of 2-keto-3-deoxygluconate to glyceraldehyde and pyruvate. The gene encoding glucose dehydrogenase has been cloned and expressed in Escherichia coli to give a fully active enzyme, with properties indistinguishable from the enzyme purified from S. solfataricus cells. Kinetic analysis revealed the enzyme to have a high catalytic efficiency for both glucose and galactose. KDG aldolase from S. solfataricus has previously been cloned and expressed in E. coli. In the current work its stereoselectivity was investigated by aldol condensation reactions between D-glyceraldehyde and pyruvate; this revealed the enzyme to have an unexpected lack of facial selectivity, yielding approximately equal quantities of 2-keto-3-deoxygluconate and 2-keto-3-deoxygalactonate. The KDG aldolase-catalyzed cleavage reaction was also investigated, and a comparable catalytic efficiency was observed with both compounds. Our evidence suggests that the same enzymes are responsible for the catabolism of both glucose and galactose in this Archaeon. The physiological and evolutionary implications of this observation are discussed in terms of catalytic and metabolic promiscuity.  相似文献   

2.
A new nonphosphorylative pathway for gluconate degradation was found in extracts of a strain of Aspergillus niger. The findings indicate that gluconate is dehydrated into 2-keto-3-deoxy-gluconate (KDG), which then is cleaved into glyceraldehyde and pyruvate. 6-Phosphogluconate was not degraded under the same conditions. In addition, KDG was formed from glyceraldehyde and pyruvate. Very weak activity was obtained when glyceraldehyde 3-phosphate replaced glyceraldehyde in this reaction.  相似文献   

3.
Carbon-carbon bond forming enzymes offer great potential for organic biosynthesis. Hence there is an ongoing effort to improve their biocatalytic properties, regarding availability, activity, stability, and substrate specificity and selectivity. Aldolases belong to the class of C-C bond forming enzymes and play important roles in numerous cellular processes. In several hyperthermophilic Archaea the 2-keto-3-deoxy-(6-phospho)-gluconate (KD(P)G) aldolase was identified as a key player in the metabolic pathway. The carbohydrate metabolism of the hyperthermophilic Crenarchaeote Thermoproteus tenax, for example, has been found to employ a combination of a variant of the Embden-Meyerhof-Parnas pathway and an unusual branched Entner-Doudoroff pathway that harbors a nonphosphorylative and a semiphosphorylative branch. The KD(P)G aldolase catalyzes the reversible cleavage of 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxygluconate (KDG) forming pyruvate and glyceraldehyde 3-phosphate or glyceraldehyde, respectively. In T. tenax initial studies revealed that the pathway is specific for glucose, whereas in the thermoacidophilic Crenarchaeote Sulfolobus solfataricus the pathway was shown to be promiscuous for glucose and galactose degradation. The KD(P)G aldolase of S. solfataricus lacks stereo control and displays additional activity with 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) and 2-keto-3-deoxygalactonate (KDGal), similar to the KD(P)G aldolase of Sulfolobus acidocaldarius. To address the stereo control of the T. tenax enzyme the formation of the two C4 epimers KDG and KDGal was analyzed via gas chromatography combined with mass spectroscopy. Furthermore, the crystal structure of the apoprotein was determined to a resolution of 2.0 A, and the crystal structure of the protein covalently linked to a pathway intermediate, namely pyruvate, was determined to 2.2 A. Interestingly, although the pathway seems to be specific for glucose in T. tenax the enzyme apparently also lacks stereo control, suggesting that the enzyme is a trade-off between required catabolic flexibility needed for the conversion of phosphorylated and nonphosphorylated substrates and required stereo control of cellular/physiological enzymatic reactions.  相似文献   

4.
The hyperthermophilic Archaea Sulfolobus solfataricus grows optimally above 80 degrees C and metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to D-2-keto-3-deoxygluconate (KDG). KDG aldolase (KDGA) then catalyzes the cleavage of KDG to D-glyceraldehyde and pyruvate. It has recently been shown that all the enzymes of this pathway exhibit a catalytic promiscuity that also enables them to be used for the metabolism of galactose. This phenomenon, known as metabolic pathway promiscuity, depends crucially on the ability of KDGA to cleave KDG and D-2-keto-3-deoxygalactonate (KDGal), in both cases producing pyruvate and D-glyceraldehyde. In turn, the aldolase exhibits a remarkable lack of stereoselectivity in the condensation reaction of pyruvate and D-glyceraldehyde, forming a mixture of KDG and KDGal. We now report the structure of KDGA, determined by multiwavelength anomalous diffraction phasing, and confirm that it is a member of the tetrameric N-acetylneuraminate lyase superfamily of Schiff base-forming aldolases. Furthermore, by soaking crystals of the aldolase at more than 80 degrees C below its temperature activity optimum, we have been able to trap Schiff base complexes of the natural substrates pyruvate, KDG, KDGal, and pyruvate plus D-glyceraldehyde, which have allowed rationalization of the structural basis of promiscuous substrate recognition and catalysis. It is proposed that the active site of the enzyme is rigid to keep its thermostability but incorporates extra functionality to be promiscuous.  相似文献   

5.
Conversion of glucose to pyruvate via reactions homologous to the non-phosphorylated Entner-Doudoroff (non-P ED) pathway could be achieved in the presence of two amino acid catalysts, cysteine and histidine: cystine oxidizes glucose to gluconic acid by the reaction homologous to glucose dehydrogenase and histidine changes gluconic acid to 2-keto-3-deoxy gluconic acid, then to pyruvate by the reaction homologous to gluconic acid dehydratase and 2-keto-3-deoxy gluconate aldolase, respectively. Pyruvate can be converted to acetyl CoA by the reaction with CoA, TPP and FAD in the presence of cysteine and histidine, which resembles pyruvate dehydrogenase reaction. It was found that gluconic acid dehydration alone is non-specific, in contrast to other reactions. The non-P ED pathway is used by some extreme thermophiles in bacteria and archaea, usually thought as the oldest among the contemporary organisms. This study suggests the possible contribution of amino acid to the origin of the glycolytic pathway.  相似文献   

6.
The pathway of glucose degradation in the thermoacidophilic euryarchaeon Picrophilus torridus has been studied by in vivo labeling experiments and enzyme analyses. After growth of P. torridus in the presence of [1-13C]- and [3-13C]glucose, the label was found only in the C-1 and C-3 positions, respectively, of the proteinogenic amino acid alanine, indicating the exclusive operation of an Entner-Doudoroff (ED)-type pathway in vivo. Cell extracts of P. torridus contained all enzyme activities of a nonphosphorylative ED pathway, which were not induced by glucose. Two key enzymes, gluconate dehydratase (GAD) and a novel 2-keto-3-deoxygluconate (KDG)-specific aldolase (KDGA), were characterized. GAD is a homooctamer of 44-kDa subunits, encoded by Pto0485. KDG aldolase, KDGA, is a homotetramer of 32-kDa subunits. This enzyme was highly specific for KDG with up to 2,000-fold-higher catalytic efficiency compared to 2-keto-3-deoxy-6-phosphogluconate (KDPG) and thus differs from the bifunctional KDG/KDPG aldolase, KD(P)GA of crenarchaea catalyzing the conversion of both KDG and KDPG with a preference for KDPG. The KDGA-encoding gene, kdgA, was identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) as Pto1279, and the correct translation start codon, an ATG 24 bp upstream of the annotated start codon of Pto1279, was determined by N-terminal amino acid analysis. The kdgA gene was functionally overexpressed in Escherichia coli. Phylogenetic analysis revealed that KDGA is only distantly related to KD(P)GA, both enzymes forming separate families within the dihydrodipicolinate synthase superfamily. From the data we conclude that P. torridus degrades glucose via a strictly nonphosphorylative ED pathway with a novel KDG-specific aldolase, thus excluding the operation of the branched ED pathway involving a bifunctional KD(P)GA as a key enzyme.Comparative analyses of sugar-degrading pathways in members of the domain Archaea revealed that all species analyzed so far degrade glucose and glucose polymers to pyruvate via modification of the classical Embden-Meyerhof (EM) and Entner-Doudoroff (ED) pathways found in bacteria and eukarya. Modified EM pathways were reported for hyperthermophilic archaea, including, e.g., the strictly fermentative Thermococcales and Desulfurococcales, the sulfur-reducing Thermoproteus tenax, and the microaerophilic Pyrobaculum aerophilum. These pathways differ from the classical EM pathway by the presence of several novel enzymes and enzyme families, catalyzing, e.g., the phosphorylation of glucose and fructose-6-phosphate, isomerization of glucose-6-phosphate, and oxidation of glyceraldehyde-3-phosphate (18, 22, 25).Modified ED pathways have been proposed for aerobic archaea, including halophiles, and thermoacidophilic crenarchaea, such as Sulfolobus species, and the euryarchaea Thermoplasma acidophilum and Picrophilus torridus. The anaerobic Thermoproteus tenax, which degrades glucose predominantly via a modified EM pathway, also utilizes—to a minor extent (<20%)—a modified ED pathway for glucose degradation. The following ED pathway modifications have been reported in archaea (25). A semiphosphorylative ED pathway was reported in halophilic archaea. Accordingly, glucose is converted to 2-keto-3-deoxy-6-gluconate (KDG) via glucose dehydrogenase and gluconate dehydratase. KDG is then phosphorylated by KDG kinase to 2-keto-3-deoxy-6-phosphogluconate (KDPG), which is split by KDPG aldolase to pyruvate and glyceraldehyde-3-phosphate (GAP). GAP is further converted to form another pyruvate via common reactions of the EM pathway, i.e., phosphorylative GAP dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, and pyruvate kinase. The net ATP yield of this pathway is 1 ATP/mol glucose.From initial enzyme studies of the thermoacidophilic archaea Sulfolobus solfataricus, Thermoplasma acidophilum, and Thermoproteus tenax, a nonphosphorylative ED pathway was proposed (25). In this modification of the ED pathway, glucose is converted to KDG via glucose dehydrogenase and gluconate dehydratase, as in the semiphosphorylative pathway, but then the steps differ as follows: KDG is cleaved into pyruvate and glyceraldehyde via 2-keto-3-deoxygluconate-specific aldolase (KDGA). The subsequent oxidation of glyceraldehyde to glycerate involves either NAD(P)+-dependent dehydrogenases or oxidoreductases. Glycerate is then phosphorylated by a specific kinase to 2-phosphoglycerate, which is finally converted to pyruvate via enolase and pyruvate kinase. This modification of the ED pathway was called “nonphosphorylative” since it is not coupled with net ATP synthesis.However, recent comparative genomic studies and refined enzyme analyses suggest that the crenarchaea Sulfolobus and Thermoproteus utilize a so-called branched ED pathway, in which a semiphosphorylated route is simultaneously operative in addition to the nonphosphorylative route (25, 32). Accordingly, the semiphosphorylated route involves—via KDG kinase—the phosphorylation of KDG to KDPG, which is then cleaved to pyruvate and GAP by means of a bifunctional KDG/KDPG aldolase, KD(P)GA. GAP is then converted to another pyruvate via nonphosphorylative GAP dehydrogenase (GAPN), phosphoglycerate mutase, enolase, and pyruvate kinase. The net ATP yield of the branched ED pathway is zero. In support of this pathway, the genes encoding gluconate dehydratase, bifunctional KD(P)GA, KDG kinase, and GAPN were found to be clustered in Sulfolobus solfataricus (see Discussion) and Thermoproteus tenax. The key enzyme of the proposed branched ED pathway is the bifunctional KD(P)GA, which catalyzes the cleavage of KDG to pyruvate and glyceraldehyde and cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. This bifunctional aldolase, which has been characterized from S. solfataricus, was found to be identical to a previously described KDG aldolase of the same organism; however, its catalytic property to also utilize KDPG as a substrate has been recognized only recently. In fact, the bifunctional KD(P)GA showed a higher catalytic efficiency for KDPG than for KDG (1, 14). Crystal structures of bifunctional KD(P)GAs of S. solfataricus and T. tenax have been reported (16, 27, 30; G. Taylor [United Kingdom], unpublished data).The branched ED pathway in S. solfataricus has been reported to be promiscuous and therefore represents an equivalent degradation route for both glucose and its C-4 epimer, galactose. Accordingly, glucose dehydrogenase, gluconate dehydratase, KDG kinase, and bifunctional KD(P)GA were found to catalyze the conversion of both glucose and galactose and the corresponding subsequent intermediates, i.e., gluconate/galactonate, KDG/KDGal (KDGal stands for 2-keto-3-deoxygalactonate), and KDPG/KDPGal (KDPGal stands for 2-keto-3-deoxy-6-phosphogalactonate) (4, 12-14).In contrast to crenarchaea, the modified ED pathway in the thermoacidophilic euryarchaea Thermoplasma acidophilum and Picrophilus torridus has not been studied in detail. Enzyme measurements in cell extracts and the characterization of few enzymes suggest the operation of a nonphosphorylative ED pathway in these organisms (2, 3, 17, 19, 25). However, in vivo evidence for the operation of an ED-type pathway, e.g., by 13C-labeling experiments with growing cultures, has not been provided yet. Furthermore, the KDG aldolase activity measured in cell extracts of P. torridus and T. acidophilum has not been purified and characterized, in particular with respect to substrate specificity, and the genes encoding these enzymes have not been identified. The biochemical analysis of this aldolase is crucial to define the enzyme as a KDG-specific aldolase, indicative of a nonphosphorylative ED pathway, or as bifunctional KD(P)GA, indicative of the branched ED pathway as proposed for the crenarchaea Sulfolobus and Thermoproteus.In this communication we studied the sugar-degrading pathway in P. torridus by in vivo labeling experiments with [13C]glucose, by enzyme measurements, and by characterization of two key enzymes, gluconate dehydratase and KDG aldolase. The data indicate that P. torridus utilizes a strict nonphosphorylative ED pathway, involving a novel KDG-specific aldolase as a key enzyme, and thus exclude the operation of a branched ED pathway, as in crenarchaea involving a bifunctional KD(P)GA as a key enzyme.  相似文献   

7.
The use of biological catalysts for industrial scale synthetic chemistry is highly attractive, given their cost effectiveness, high specificity that obviates the need for protecting group chemistry, and the environmentally benign nature of enzymatic procedures. Here we evolve the naturally occurring 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolases from Thermatoga maritima and Escherichia coli, into enzymes that recognize a nonfunctionalized electrophilic substrate, 2-keto-4-hydroxyoctonoate (KHO). Using an in vivo selection based on pyruvate auxotrophy, mutations were identified that lower the K(M) value up to 100-fold in E. coli KDPG aldolase, and that enhance the efficiency of retro-aldol cleavage of KHO by increasing the value of k(cat)/K(M) up to 25-fold in T. maritima KDPG aldolase. These data indicate that numerous mutations distal from the active site contribute to enhanced 'uniform binding' of the substrates, which is the first step in the evolution of novel catalytic activity.  相似文献   

8.
One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU, annotated as a putative 4-hydroxy-2-ketoheptane-1,7-dioate aldolase (HpcH) in the sequence databases. HpcH is the final enzyme in the degradation pathway of the aromatic compound homoprotocatechuate. We have determined the crystal structure of apo-YfaU and the Mg (2+)-pyruvate product complex. Despite greater sequence and structural similarity to HpcH, genomic context suggests YfaU is instead a 2-keto-3-deoxy sugar aldolase like the homologous 2-dehydro-3-deoxygalactarate aldolase (DDGA). Enzyme kinetic measurements show activity with the probable physiological substrate 2-keto-3-deoxy- l-rhamnonate, supporting the functional assignment, as well as the structurally similar 2-keto-3-deoxy- l-mannonate and 2-keto-3-deoxy- l-lyxonate (see accompanying paper: Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Hubbard, B. K., Delli, J. D., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2008) Biochemistry 47, 9944-9954). YfaU has similar activity toward the HpcH substrate 4-hydroxy-2-ketoheptane-1,7-dioate and synthetic substrates 4-hydroxy-2-ketopentanoic acid and 4-hydroxy-2-ketohexanoic acid. This indicates a relaxed substrate specificity that complicates the functional assignment of members of this enzyme superfamily. Crystal structures suggest these enzymes use an Asp-His intersubunit dyad to activate a metal-bound water or hydroxide for proton transfer during catalysis.  相似文献   

9.
2-Keto-3-deoxygluconate aldolase of Aspergillus niger, an enzyme that has not been reported previously, was purified 468-fold. Maximal activity was obtained at pH 8.0 and 50 C. The enzyme exhibited relative stereochemical specificity with respect to glyceraldehyde. The Km values for 2-keto-3-deoxygluconate, glyceraldehyde, and pyruvate were 10, 13.3, and 3.0 mM, respectively. The effects of some compounds and inhibitors on enzyme activity were examined. Stability of the enzyme under different conditions was investigated. The equilibrium constant was about 0.33 X 10(-3) M.  相似文献   

10.
Treatment of pure 2-keto-4-hydroxyglutarate aldolase from Escherichia coli, a "lysine-type," Schiff-base mechanism enzyme, with the substrate analog bromopyruvate results in a time- and concentration-dependent loss of enzymatic activity. Whereas the substrates pyruvate and 2-keto-4-hydroxyglutarate provide greater than 90% protection against inactivation by bromopyruvate, no protective effect is seen with glycolaldehyde, an analog of glyoxylate. Inactivation studies with [14C] bromopyruvate show the incorporation of 1.1 mol of 14C-labeled compound/enzyme subunit; isolation of a radioactive peptide and determination of its amino acid sequence indicate that the radioactivity is associated with glutamate 45. Incubation of the enzyme with excess [14C]bromopyruvate followed by denaturation with guanidine.HCl allow for the incorporation of carbon-14 at cysteines 159 and 180 as well. Whereas the presence of pyruvate protects Glu-45 from being esterified, it does not prevent the alkylation of these 2 cysteine residues. The results indicate that Glu-45 of E. coli 2-keto-4-hydroxyglutarate aldolase is essential for catalytic activity, most likely acting as the amphoteric proton donor/acceptor that is required as a participant in the overall mechanism of the reaction catalyzed.  相似文献   

11.
Treatment of homogeneous preparations of Escherichia coli 2-keto-4-hydroxyglutarate aldolase with 1,2-cyclohexanedione, 2,3-butanedione, phenylglyoxal, or 2,4-pentanedione results in a time- and concentration-dependent loss of enzymatic activity; the kinetics of inactivation are pseudo-first order. Cyclohexanedione is the most effective modifier; a plot of log (1000/t 1/2) versus log [cyclohexanedione] gives a straight line with slope = 1.1, indicating that one molecule of modifier reacts with each active unit of enzyme. The kinetics of inactivation are first order with respect to cyclohexanedione, suggesting that the loss of activity is due to modification of 1 arginine residue/subunit. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced structural alteration of the aldolase. The same Km but decreased Vmax values are obtained when partially inactivated enzyme is compared with native. Amino acid analyses of 95% inactivated aldolase show the loss of 1 arginine/subunit with no significant change in other amino acid residues. Considerable protection against inactivation is provided by the substrates 2-keto-4-hydroxyglutarate and pyruvate (75 and 50%, respectively) and to a lesser extent (40 and 35%, respectively) by analogs like 2-keto-4-hydroxybutyrate and 2-keto-3-deoxyarabonate. In contrast, formaldehyde or glycolaldehyde (analogs of glyoxylate) under similar conditions show no protective effect. These results indicate that an arginine residue is required for E. coli 2-keto-4-hydroxyglutarate aldolase activity; it most likely participates in the active site of the enzyme by interacting with the carboxylate anion of the pyruvate-forming moiety of 2-keto-4-hydroxyglutarate.  相似文献   

12.
Reher M  Schönheit P 《FEBS letters》2006,580(5):1198-1204
Cells of Picrophilus torridus, grown on glucose, contained all enzyme activities of a non-phosphorylative Entner-Doudoroff pathway, including glucose dehydrogenase, gluconate dehydratase, 2-keto-3-deoxygluconate aldolase, glyceraldehyde dehydrogenase (GADH), glycerate kinase (2-phosphoglycerate forming), enolase and pyruvate kinase. GADH was purified to homogeneity. The 115-kDa homodimeric protein catalyzed the oxidation of glyceraldehyde with NADP+ at highest catalytic efficiency. NAD+ was not used. By MALDI-TOF analysis, open reading frame (ORF) Pto0332 was identified in the genome of P. torridus as the encoding gene, designated gadh, and the recombinant GADH was characterized. In Thermoplasma acidophilum ORF Ta0809 represents a gadh homolog with highest sequence identity; the gene was expressed and the recombinant protein was characterized as functional GADH with properties very similar to the P. torridus enzyme. Sequence comparison and phylogenetic analysis define both GADHs as members of novel enzyme family within the aldehyde dehydrogenase superfamily.  相似文献   

13.
Summary 2-Keto-3-deoxygluconate, an intermediate of glucose breakdown inSulfolobus solfataricus, was produced by enzymic dehydration of gluconate using whole cells of the micro-organism immobilized in crude egg white. The degradation of 2-keto-3-deoxygluconate to pyruvate and glyceraldehyde was avoided by inhibiting the aldolase activity in the cells by sodium borohydride treatment.  相似文献   

14.
15.
The thermoacidophilic archaeonThermoplasma acidophilum has long been known to utilized-glucosevia the non-phosphorylated Entner-Doudoroff (nED) pathway. We now report the identification of a gene encoding 2-keto-3-deoxy-d-gluconate (KDG) kinase. The discovery of this gene implies the presence of a glycolysis pathway, other than the nED pathway. It was found that Ta0122 in theT. acidophilum genome corresponded to KDG kinase. This enzyme shares no similarity with known KDG kinases, and belongs to a novel class of sugar kinases. Of the five sugars tested only KDG was utilized as a substrate.  相似文献   

16.
The hyperthermophilic archaeon Sulfolobus solfataricus metabolises glucose and galactose by a 'promiscuous' non-phosphorylative variant of the Entner-Doudoroff pathway, in which a series of enzymes have sufficient substrate promiscuity to permit the metabolism of both sugars. Recently, it has been proposed that the part-phosphorylative Entner-Doudoroff pathway occurs in parallel in S. solfataricus as an alternative route for glucose metabolism. In this report we demonstrate, by in vitro kinetic studies of D-2-keto-3-deoxygluconate (KDG) kinase and KDG aldolase, that the part-phosphorylative pathway in S. solfataricus is also promiscuous for the metabolism of both glucose and galactose.  相似文献   

17.
2-Keto-3-deoxygluconate kinase (KDGK) catalyzes the phosphorylation of 2-keto-3-deoxygluconate (KDG) to 2-keto-3-deoxy-6-phosphogluconate (KDGP). The genome sequence of Thermus thermophilus HB8 contains an open reading frame that has a 30% identity to Escherichia coli KDGK. The KDGK activity of T.thermophilus protein (TtKDGK) has been confirmed, and its crystal structure has been determined by the molecular replacement method and refined with two crystal forms to 2.3 angstroms and 3.2 angstroms, respectively. The enzyme is a hexamer organized as a trimer of dimers. Each subunit is composed of two domains, a larger alpha/beta domain and a smaller beta-sheet domain, similar to that of ribokinase and adenosine kinase, members of the PfkB family of carbohydrate kinases. Furthermore, the TtKDGK structure with its KDG and ATP analogue was determined and refined at 2.1 angstroms. The bound KDG was observed predominantly as an open chain structure. The positioning of ligands and the conservation of important catalytic residues suggest that the reaction mechanism is likely to be similar to that of other members of the PfkB family, including ribokinase. In particular, the Asp251 is postulated to have a role in transferring the gamma-phosphate of ATP to the 5'-hydroxyl group of KDG.  相似文献   

18.
2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry.  相似文献   

19.
Pure 2-keto-4-hydroxyglutarate aldolase of Escherichia coli, a "lysine-type" trimeric enzyme which has the unique properties of forming an "abortive" Schiff-base intermediate with glyoxylate (the aldehydic product/substrate) and of showing strong beta-decarboxylase activity toward oxalacetate, binds any one of its substrates (2-keto-4-hydroxyglutarate, pyruvate, or glyoxylate) in a competitive manner. To determine whether the substrates bind at the same or different (juxta-positioned) sites and what degree of homology might exist between the active-site lysine peptide of this enzyme and that of other lysine-type (Class I) aldolases or beta-decarboxylases, the azomethine formed separately by this aldolase with either [14C]pyruvate or [14C]glyoxylate was reduced with CNBH3-. After each enzyme adduct was digested with trypsin, the 14C-labeled peptide was isolated, purified, and subjected to amino acid analysis and sequence determination. In each case, the same 14-amino acid lysine-peptide was isolated and found to have the following primary sequence: Glu-Phe-*Lys-Phe-Phe-Pro-Ala-Glu-Ala-Asn-Gly-Gly-Val-Lys (where * = the active-site lysine). Hence, glyoxylate competes for, and inhibits aldolase activity by reacting with, the one active-site lysine residue/subunit. This active-site lysine peptide has a high degree (65%) of homology with that of 2-keto-3-deoxy-6-phosphogluconate aldolase of Pseudomonas putida but is not similar to that of any Class I fructose-1,6-bisphosphate aldolase or of acetoacetate beta-decarboxylase of Clostridium acetobutylicum. Furthermore, it was found that extensive reaction of glyoxylate with the N-terminal amino group of this enzyme may well be general complicating factor in sequence studies with proteins plus glyoxylate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号