首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gerken U  Erhardt D  Bär G  Ghosh R  Kuhn A 《Biochemistry》2008,47(22):6052-6058
The binding of the inner membrane insertase YidC from Escherichia coli to its substrate, the Pf3 coat protein, was examined in vitro by fluorescence spectroscopy. Purified YidC protein was solubilized with the lipid-like detergent n-dodecylphosphocholine and noncovalently labeled with 1-anilino-naphthalene-8-sulfonate (ANS), whereas the Pf3 coat protein was kept in solution by the addition of 10% (v/v) isopropanol to the buffer. The binding of Pf3 coat protein was analyzed by fluorescence quenching of ANS bound to YidC. All binding curves showed a strict hyperbolic form at pH values between 9.0 and 5.0, indicating a reversible and noncooperative binding between YidC and its substrate. Analysis of the data revealed a dissociation constant K D for the binding process in the range of 1 microM. The pH profile of the K D values suggests that the binding of the Pf3 coat protein is dominated by hydrophobic interactions. The titration experiments provide strong evidence for a conformational change of the insertase upon binding a Pf3 coat protein molecule.  相似文献   

2.
The membrane insertion of single bacteriophage Pf3 coat proteins was observed by confocal fluorescence microscopy. Within seconds after addition of the purified and fluorescently labeled protein to liposomes or proteoliposomes containing the purified and reconstituted membrane insertase YidC of Escherichia coli, the translocation of the labeled residue was detected. The 50-amino-acid-long Pf3 coat protein was labeled with Atto520 and inserted into the proteoliposomes. Translocation of the dye into the proteoliposome was revealed by quenching the fluorescence outside of the vesicles. This allowed us to distinguish single Pf3 coat proteins that only bound to the surface of the liposomes from proteins that had inserted into the bilayer and translocated the dye into the lumen. The Pf3 coat protein required the presence of the YidC membrane insertase, whereas mutants that have a membrane-spanning region with an increased hydrophobicity were autonomously inserted into the liposomes without YidC.  相似文献   

3.
The membrane insertase YidC inserts newly synthesized proteins into the plasma membrane. While defects in YidC homologs in animals and plants cause diseases, YidC in bacteria is essential for life. Membrane insertion and assembly of ATP synthase and respiratory complexes is catalyzed by YidC. To investigate how YidC interacts with membrane-inserting proteins, we generated single cysteine mutants in YidC and in the model substrate Pf3 coat protein. The single cysteine mutants were expressed and analyzed for disulfide formation during 30 s of synthesis. The results show that the substrate contacts different YidC residues in four of the six transmembrane regions. The residues are located either in the region of the inner leaflet, in the center, as well as in the periplasmic leaflet, consistent with the hypothesis that YidC presents a hydrophobic platform for inserting membrane proteins. In a YidC mutant where most of the contacting residues were mutated to serines, YidC function was severely disturbed and no longer active in a complementation test, suggesting that the residues are important for function. In addition, a Pf3 mutant with a defect in membrane insertion was deficient to contact the periplasmic residues of YidC.  相似文献   

4.
Membrane protein translocation and insertion is a central issue in biology. Here we focus on a minimal system, the membrane insertase YidC of Escherichia coli that inserts small proteins into the cytoplasmic membrane. In a reconstituted system individual insertion processes were followed by single-pair fluorescence resonance energy transfer (FRET), with a pair of fluorophores on YidC and the substrate Pf3 coat protein. After addition of N-terminally labeled Pf3 coat protein a close contact to YidC at its cytoplasmic label was observed. This allowed to monitor the translocation of the N-terminal domain of Pf3 coat protein across the membrane in real time. Translocation occurred within milliseconds as the label on the N-terminal domain rapidly approached the fluorophore on the periplasmic domain of YidC at the trans side of the membrane. After the close contact, the two fluorophores separated, reflecting the release of the translocated Pf3 coat protein from YidC into the membrane bilayer. When the Pf3 coat protein was labeled C-terminally, no translocation of the label was observed although efficient binding to the cytoplasmic positions of YidC occurred.  相似文献   

5.
YidC, a 60-kDa integral membrane protein, plays an important role in membrane protein insertion in bacteria. YidC can function together with the SecYEG machinery or operate independently as a membrane protein insertase. In this paper, we describe two new yidC mutants that lead to a cold-sensitive phenotype in bacterial cell growth. Both alleles impart a cold-sensitive phenotype and result from point mutations localized to the third transmembrane (TM3) segment of YidC, indicating that this region is crucial for YidC function. We found that the yidC(C423R) mutant confers a weak phenotype on membrane protein insertion while a yidC(P431L) mutant leads to a stronger phenotype. In both cases, the affected substrates include the Pf3 coat protein and ATP synthase F1Fo subunit c (FoC), while CyoA (the quinol binding subunit of the cytochrome bo3 quinol oxidase complex) and wild-type procoat are slightly affected or not affected in either cold-sensitive mutant. To determine if the different substrates require various levels of YidC activity for membrane insertion, we performed studies where YidC was depleted using an arabinose-dependent expression system. We found that −3M-PC-Lep (a construct with three negatively charged residues inserted into the middle of the procoat-Lep [PC-Lep] protein) and Pf3 P2 (a construct with the Lep P2 domain added at the C terminus of Pf3 coat) required the highest amount of YidC and that CyoA-N-P2 (a construct with the amino-terminal part of CyoA fused to the Lep P2 soluble domain) and PC-Lep required the least, while FoC required moderate YidC levels. Although the cold-sensitive mutations can preferentially affect one substrate over another, our results indicate that different substrates require different levels of YidC activity for membrane insertion. Finally, we obtained several intragenic suppressors that overcame the cold sensitivity of the C423R mutation. One pair of mutations suggests an interaction between TM2 and TM3 of YidC. The studies reveal the critical regions of the YidC protein and provide insight into the substrate profile of the YidC insertase.  相似文献   

6.
Conditional lethal YidC mutants have been isolated to decipher the role of YidC in the assembly of Sec-dependent and Sec-independent membrane proteins. We now show that the membrane insertion of the Sec-independent M13 procoat-lep protein is inhibited in a short time in a temperature-sensitive mutant when shifted to the nonpermissive temperature. This provides an additional line of evidence that YidC plays a direct role in the insertion of the Sec-independent M13 procoat protein. However, in the temperature-sensitive mutant, the insertion of the Sec-independent Pf3 phage coat protein and the Sec-dependent leader peptidase were not strongly inhibited at the restricted temperatures. Conversely, using a cold-sensitive YidC strain, we find that the membrane insertion of the Sec-independent Pf3 coat protein is blocked, and the Sec-dependent leader peptidase is inhibited at the nonpermissive temperature, whereas the insertion of the M13 procoat protein is nearly normal. These data show that the YidC function for procoat and its function for Pf3 coat and possibly leader peptidase are genetically separable and suggest that the YidC structural requirements are different for the Sec-independent M13 procoat and Pf3 coat phage proteins that insert by different mechanisms.  相似文献   

7.
Chen M  Xie K  Yuan J  Yi L  Facey SJ  Pradel N  Wu LF  Kuhn A  Dalbey RE 《Biochemistry》2005,44(31):10741-10749
The M13 phage Procoat protein is one of the best characterized substrates for the novel YidC pathway. It inserts into the membrane independent of the SecYEG complex but requires the 60 kDa YidC protein. Mutant Procoat proteins with alterations in the periplasmic region had been found to require SecYEG and YidC. In this report, we show that the membrane insertion of these mutants also strongly depends on SecDF that bridges SecYEG to YidC. In a cold-sensitive mutant of YidC, the Sec-dependent function of YidC is strongly impaired. We find that specifically the SecDF-dependent mutants are inhibited in the cold-sensitive YidC strain. Finally, we find that subtle changes in the periplasmic loop such as the number and location of negatively charged residues and the length of the periplasmic loop can make the Procoat strictly Sec-dependent. In addition, we successfully converted Sec-independent Pf3 coat into a Sec-dependent protein by changing the location of a negatively charged residue in the periplasmic tail. Protease mapping of Pf3 coat shows that the insertion-arrested proteins that accumulate in the YidC- or in the SecDF-deficient strains are not translocated. Taken together, the data suggest that the Sec-dependent mutants insert at the interface of YidC and the translocon with SecDF assisting in the translocation step in vivo.  相似文献   

8.
YidC is a newly defined translocase component that mediates the insertion of proteins into the membrane bilayer. How YidC functions in the insertion process is not known. In this study, we report that the Sec-independent Pf3 coat protein requires the YidC protein specifically for the membrane translocation step. Using photocrosslinking techniques and ribosome-bound Pf3 coat derivatives with an extended carboxyl-terminal region, we found that the transmembrane region of the Pf3 coat protein physically interacts with YidC and the bacterial signal recognition particle Ffh component. We also find that in the insertion pathway, Pf3 coat interacts strongly with YidC only after its transmembrane segment is fully exposed outside the ribosome tunnel. Interaction between Pf3 coat and YidC occurs even in the absence of the proton motive force and with a Pf3 coat mutant that is defective in transmembrane insertion. Our study demonstrates that YidC can directly interact with a Sec-independent membrane protein, and the role of YidC is at the stage of folding the Pf3 protein into a transmembrane configuration.  相似文献   

9.
Klenner C  Yuan J  Dalbey RE  Kuhn A 《FEBS letters》2008,582(29):3967-3972
The coat protein of bacteriophage Pf3 is inserted into the plasma membrane of Escherichia coli by the insertase YidC. To identify which of the six transmembrane regions of YidC bind the single-spanning Pf3 coat protein during membrane protein biogenesis, we used the disulfide cross-linking approach. We generated single cysteines in each of the transmembrane regions of YidC and in the center of the hydrophobic region of Pf3 coat protein. We found that the substrate Pf3 coat contacts the first and third transmembrane segment (TM) of YidC as crosslinks between these two proteins can be formed in vivo during membrane biogenesis. A detailed disulfide-mapping study revealed that one face of TM3 of YidC makes contact with the Pf3 protein.

Structured summary

MINT-6795850, MINT-6795869, MINT-6795912, MINT-6795927, MINT-6795942:
Coat protein (uniprotkb:P03623) binds (MI:0408) YidC (uniprotkb:P25714) by cross-linking studies (MI:0030)
MINT-6795898:
Coat protein (uniprotkb:P03623) binds (MI:0408) Coat protein (uniprotkb:P03623) by cross-linking studies (MI:0030)
  相似文献   

10.
YidC is a recently discovered bacterial membrane protein that is related to the mitochondrial Oxa1p and the Alb3 protein of chloroplasts. These proteins are required in the membrane integration process of newly synthesized proteins that do not require the classical Sec machinery. Here we demonstrate that YidC is sufficient for the membrane integration of a Sec-independent protein. Microgram amounts of the purified single-spanning Pf3 coat protein were efficiently inserted into proteoliposomes containing the purified YidC. A mutant Pf3 coat protein with an extended hydrophobic region was inserted independently of YidC into the membrane both in vivo and in vitro, but its insertion was accelerated by YidC. These results show that YidC can function separately from the Sec translocase to integrate membrane proteins into the lipid bilayer.  相似文献   

11.
Xie K  Kiefer D  Nagler G  Dalbey RE  Kuhn A 《Biochemistry》2006,45(44):13401-13408
The YidC protein of Escherichia coli is required for inserting Sec-independent membrane proteins and has a supportive role for the insertion of Sec-dependent proteins into the membrane bilayer. Because a portion of YidC copurifies with the Sec translocase, this interaction might be necessary to assist in the membrane insertion of Sec-dependent proteins. This study describes a deletion analysis that investigates which parts of YidC are required for its interaction with the SecDF complex of the Sec translocase and for the function of YidC as an insertase for the Sec-dependent membrane proteins. The results suggest that the first periplasmic region, which includes residues 24-346, is required for the interaction of YidC with the Sec translocase, in particular with the SecF protein. Further studies showed that residues 215-265 of YidC are sufficient for SecF binding. Surprisingly, the interaction of YidC with SecF is not critical for cell viability as YidC, lacking residues 24-264, was fully functional to support the growth of E. coli. It was also observed that this YidC mutant was fully functional to insert the Sec-dependent subunit A of the F(1)F(o) ATP synthase and an M13 procoat derivative, as well as the Sec-independent M13 procoat protein and subunit C of the ATP synthase. Only when additional residues of the periplasmic region were deleted (265-346) was the membrane insertase function of YidC inhibited.  相似文献   

12.
13.
Tyagi NK  Kumar A  Goyal P  Pandey D  Siess W  Kinne RK 《Biochemistry》2007,46(47):13616-13628
In order to gain a better understanding of the structure-function relation in hSGLT1, single Trp residues were introduced into a functional hSGLT1 mutant devoid of Trps at positions that previously had been postulated to be involved in sugar recognition/translocation and/or phlorizin binding. The mutant proteins were expressed in Pichia pastoris, purified, and reconstituted into liposomes. In transport experiments the putative sugar binding site mutants W457hSGLT1 and W460hSGLT1 showed a drastic decrease in affinity toward alpha-methyl-d-glucopyranoside with Km values of 13.3 and 5.26 mM compared to 0.4 mM of the Trp-less hSGLT1. In addition, a strong decrease in the inhibitory effect of phlorizin was observed. In Trp fluorescence studies the position of the emission maxima of the mutants, their sensitivity to N-bromosuccinimide oxidation, and their interaction with water soluble quenchers demonstrate that Trp457 and Trp460 are in contact with the hydrophilic extravesicular environment. In both mutants Trp fluorescence was quenched significantly, but differently, by various glucose analogues. They also show significant protection by d-glucose and phlorizin against acrylamide, KI, or TCE quenching. W602hSGLT1 and W609hSGLT1, the putative aglucone binding site mutants, exhibit normal sugar and phlorizin affinity, and show fluorescence properties which indicate that these residues are located in a very hydrophilic environment. Phlorizin and phloretin, but not d-glucose, protect both mutants against collisional quenchers. Depth-calculations using the parallax method suggest a location of Trp457 and Trp460 at an average distance of 10.8 A and 7.4 A from the center of the bilayer, while Trp602 and Trp609 are located outside the membrane. These results suggest that in the native carrier residues Gln at position 457 and Thr at position 460 reside in a hydrophilic access pathway extending 5-7 A into the membrane to which sugars as well as the sugar moiety of inhibitory glucosides bind. Residues Phe602 and Phe609 contribute by their hydrophobic aromatic residues toward binding of the aglucone part of phlorizin. Thereby in the phlorizin-carrier complex a close vicinity between these two subdomains of the transporter is established creating a phlorizin binding pocket with the previously estimated dimensions of 10 x 17 x 7 A.  相似文献   

14.
Human 14-3-3 proteins contain two conserved tryptophan residues in each monomer, Trp60 and Trp233 in isoform γ. 14-3-3γ binds to negatively charged membranes and here we show that membrane binding can be monitored by steady-state intrinsic fluorescence spectroscopy. Measurements with W60F and W233F 14-3-3γ mutants revealed that Trp60 is the major contributor to the emission fluorescence, whereas the fluorescence of Trp233, which π-stacks with Tyr184, is quenched. The fluorescence is reduced and red-shifted upon specific binding of a phosphate ligand, and further red-shifted upon binding of 14-3-3γ to the membrane, compatible with solvent exposure of Trp60. Moreover, our results support that membrane binding involves the non-conserved, convex area of 14-3-3γ, and that Trp residues do not intercalate in the bilayer.  相似文献   

15.
Powl AM  East JM  Lee AG 《Biochemistry》2005,44(15):5873-5883
We have introduced single Trp residues into the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and used fluorescence quenching by brominated phospholipids to detect the presence of a binding site of high affinity for anionic phospholipids. A cluster of three positively charged residues, Arg-98, Lys-99, and Lys-100, is located on the cytoplasmic side of MscL, in a position where they could interact with the headgroup of an anionic phospholipid. Single mutations of these charged residues in the Trp-containing mutant F80W results in a decreased affinity for phosphatidic acid. Single mutations of the charged residues also result in a significant shift in the fluorescence emission spectrum in dioleoylphosphatidylcholine [di(C18:1)PC] but smaller shifts in dioleoylphosphatidic acid [di(C18:1)PA], suggesting that single mutations result in a conformational change for the protein that is reversed by interaction with anionic phospholipids. This is consistent with the observation that single mutations of the charged residues do not result in a gain of function phenotype. In contrast, simultaneous mutation of all three charged residues results in a gain of function phenotype, and a shift in fluorescence emission spectrum in di(C18:1)PC not reversed in di(C18:1)PA. The gain of function mutant F80W:V21K also shows a shifted fluorescence emission spectrum in both di(C18:1)PC and di(C18:1)PA and binds di(C18:1)PC and di(C18:1)PA with equal affinity, suggesting that the conformational change caused by the V21K mutation results in a breakup of the cluster of three positive charges. Experiments with the Trp mutants L69W and Y87W allow us to measure lipid binding constants on the periplasmic and cytoplasmic sides of the membrane, respectively. On both sides of the membrane the affinity for di(C18:1)PC is equal to that for dioleoylphosphatidylethanolamine. On the periplasmic side of the membrane, there is no selectivity for anionic phospholipids. In contrast, quenching data for Y87W provides evidence for the existence of two lipid binding sites on the cytoplasmic side of the membrane close to the Trp residue at position 87, with binding to one of these sites showing a marked preference for anionic lipid over zwitterionic lipid, presumably involving the charged cluster Arg-98, Lys-99, and Lys-100.  相似文献   

16.
Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N2 ⇆ I2 ⇆ 2U) process involving a dimeric intermediate (I2). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N2 ⇆ I2 transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.  相似文献   

17.
Inner membrane proteins (IMPs) of Escherichia coli use different pathways for membrane targeting and integration. YidC plays an essential but poorly defined role in the integration and folding of IMPs both in conjunction with the Sec translocon and as a Sec-independent insertase. Depletion of YidC only marginally affects the insertion of Sec-dependent IMPs, whereas it blocks the insertion of a subset of Sec-independent IMPs. Substrates of this latter "YidC-only" pathway include the relatively small IMPs M13 procoat, Pf3 coat protein, and subunit c of the F(1)F(0) ATPase. Recently, it has been shown that the steady state level of the larger and more complex CyoA subunit of the cytochrome o oxidase is also severely affected upon depletion of YidC. In the present study we have analyzed the biogenesis of the integral lipoprotein CyoA. Collectively, our data suggest that the first transmembrane segment of CyoA rather than the signal sequence recruits the signal recognition particle for membrane targeting. Membrane integration and assembly appear to occur in two distinct sequential steps. YidC is sufficient to catalyze insertion of the N-terminal domain consisting of the signal sequence, transmembrane segment 1, and the small periplasmic domain in between. Translocation of the large C-terminal periplasmic domain requires the Sec translocon and SecA, suggesting that for this particular IMP the Sec translocon might operate downstream of YidC.  相似文献   

18.
By analyzing, after expression in yeast and purification, the intrinsic fluorescence properties of point mutants of rabbit Ca(2+)-ATPase (SERCA1a) with alterations to amino acid residues in Ca(2+)-binding site I (E(771)), site II (E(309)), in both sites (D(800)), or in the nucleotide-binding domain (W(552)), we were able to follow the conformational changes associated with various steps in the ATPase catalytic cycle. Whereas Ca(2+) binding to purified wild-type (WT) ATPase in the absence of ATP leads to the rise in Trp fluorescence expected for the so-called E2 --> E1Ca(2) transition, the Ca(2+)-induced fluorescence rise is dramatically reduced for the E(309)Q mutant. As this purified E(309)Q mutant retains the ability to bind Ca(2+) at site I (but not at site II), we tentatively conclude that the protein reorganization induced by Ca(2+) binding at site II makes the major contribution to the overall Trp fluorescence changes observed upon Ca(2+) binding to both sites. Judging from the fluorescence response of W(552)F, similar to that of WT, these changes appear to be primarily due to membranous tryptophans, not to W(552). The same holds for the fluorescence rise observed upon phosphorylation from P(i) (the so-called E2 --> E2P transition). As for WT ATPase, Mg(2+) binding in the absence of Ca(2+) affects the fluorescence of the E(309)Q mutant, suggesting that this Mg(2+)-dependent fluorescence rise does not reflect binding of Mg(2+) to Ca(2+) sites; instead, Mg(2+) probably binds close to the catalytic site, or perhaps near transmembrane span M3, at a location recently revealed by Fe(2+)-catalyzed oxidative cleavage. Mutation of W(552) hardly affects ATP-induced fluorescence changes in the absence of Ca(2+), which are therefore mostly due to membranous Trp residues, demonstrating long-range communication between the nucleotide-binding domain and the membranous domain.  相似文献   

19.
The Pf3 major coat protein of the Pf3 bacteriophage is stored in the inner membrane of the infected cell during the reproductive cycle. The protein consists of 44 amino acids, and contains an acidic amphipathic N-terminal domain, a hydrophobic domain, and a short basic C-terminal domain. The mainly alpha-helical membrane-bound protein traverses the membrane once, leaving the C-terminus in the cytoplasm and the N-terminus in the periplasm. A cysteine-scanning approach was followed to measure which part of the membrane-bound Pf3 protein is inside or outside the membrane. In this approach, the fluorescence probe N-[(iodoacetyl)amino]ethyl-1-sulfonaphthylamine (IAEDANS) was attached to single-cysteine mutants of the Pf3 coat protein. The labeled mutant coat proteins were reconstituted into the phospholipid DOPC/DOPG (80/20 molar ratio) and DOPE/DOPG (80/20 molar ratio) model membranes. We subsequently studied the fluorescence characteristics at the different positions in the protein. We measured the local polarity of the environment of the probe, as well as the accessibility of the probe to the fluorescence quencher acrylamide. The results of this study show a single membrane-spanning protein with both the C- and N-termini remaining close to the surface of the membrane. A nearly identical result was seen previously for the membrane-bound M13 coat protein. On the basis of a comparison between the results from both studies, we suggest an "L-shaped" membrane-bound model for the Pf3 coat protein. DOPE-containing model membranes revealed a higher polarity, and quenching efficiency at the membrane/water interface. Furthermore, from the outside to the inside of the membrane, a steeper polarity gradient was measured at the PE/PG interface as compared to the PC/PG interface. These results suggest a thinner interface for DOPE/DOPG than for DOPC/DOPG membranes.  相似文献   

20.
In bacteria, a subset of membrane proteins insert into the membrane via the Sec apparatus with the assistance of the widely conserved essential membrane protein insertase YidC. After threading into the SecYEG translocon, transmembrane segments of nascent proteins are thought to exit the translocon via a lateral gate in SecY, where YidC facilitates their transfer into the lipid bilayer. Interactions between YidC and components of the Sec apparatus are critical to its function. The first periplasmic loop of YidC interacts directly with SecF. We sought to identify the regions or residues of YidC that interact with SecY or with additional components of the Sec apparatus other than SecDF. Using a synthetic lethal screen, we identified residues of YidC that, when mutated, led to dependence on SecDF for viability. Each residue identified is highly conserved among YidC homologs; most lie within transmembrane domains. Overexpression of SecY in the presence of two YidC mutants partially rescued viability in the absence of SecDF, suggesting that the corresponding wild-type YidC residues (G355 and M471) participate in interactions, direct or indirect, with SecY. Staphylococcus aureus YidC complemented depletion of YidC, but not of SecDF, in Escherichia coli. G355 of E. coli YidC is invariant in S. aureus YidC, suggesting that this highly conserved glycine serves a conserved function in interactions with SecY. This study demonstrates that transmembrane residues are critical in YidC interactions with the Sec apparatus and provides guidance on YidC residues of interest for future structure-function analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号