首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Jorge AM  Hoiczyk E  Gomes JP  Pinho MG 《PloS one》2011,6(11):e27542
EzrA is a negative regulator of FtsZ in Bacillus subtilis, involved in the coordination between cell growth and cell division and in the control of the cell elongation-division cycle. We have now studied the role of the Staphylococcus aureus homologue of the B. subtilis EzrA protein and shown that it is not essential for cell viability. EzrA conditional and null mutants have an overall increase of the average cell size, compared to wild type strains. In the larger ezrA mutant S. aureus cells, cell division protein FtsZ and the cell wall synthesizing Penicillin Binding Proteins (PBPs) are not properly localized. This suggests that there may be a maximum cell diameter that allows formation of a Z-ring capable of recruiting the other components of the divisome and of driving cytokinesis. We propose that the major role of EzrA in S. aureus is in cell size homeostasis.  相似文献   

2.
Geometry of cell division in Staphylococcus aureus.   总被引:4,自引:0,他引:4       下载免费PDF全文
The process of division in Staphylococcus aureus was examined by phase-contrast microscopy. The organisms appeared to divide in three alternating perpendicular planes, with sister cells remaining attached to each other after division. The resulting point of attachment was usually not exactly at the point corresponding to the center of the previous septal disk. Moreover, sister cells often changed position with respect to one another while still remaining attached. These factors are apparently responsible for the irregularity of staphylococcal clumps. Studies with penicillin and the examination of thin sections in the electron microscope confirm the conclusion, based upon light microscopy, that successive divisions in S. aureus occur in perpendicular planes.  相似文献   

3.
4.
The growth and division of Staphylococcus aureus was monitored by atomic force microscopy (AFM) and thin-section transmission electron microscopy (TEM). A good correlation of the structural events of division was found using the two microscopies, and AFM was able to provide new additional information. AFM was performed under water, ensuring that all structures were in the hydrated condition. Sequential images on the same structure revealed progressive changes to surfaces, suggesting the cells were growing while images were being taken. Using AFM small depressions were seen around the septal annulus at the onset of division that could be attributed to so-called murosomes (Giesbrecht et al., Arch. Microbiol. 141:315-324, 1985). The new cell wall formed from the cross wall (i.e., completed septum) after cell separation and possessed concentric surface rings and a central depression; these structures could be correlated to a midline of reactive material in the developing septum that was seen by TEM. The older wall, that which was not derived from a newly formed cross wall, was partitioned into two different surface zones, smooth and gel-like zones, with different adhesive properties that could be attributed to cell wall turnover. The new and old wall topographies are equated to possible peptidoglycan arrangements, but no conclusion can be made regarding the planar or scaffolding models.  相似文献   

5.
The polymerization of peptidoglycan is the result of two types of enzymatic activities: transglycosylation, the formation of linear glycan chains, and transpeptidation, the formation of peptide cross-bridges between the glycan strands. Staphylococcus aureus has four penicillin binding proteins (PBP1 to PBP4) with transpeptidation activity, one of which, PBP2, is a bifunctional enzyme that is also capable of catalyzing transglycosylation reactions. Additionally, two monofunctional transglycosylases have been reported in S. aureus: MGT, which has been shown to have in vitro transglycosylase activity, and a second putative transglycosylase, SgtA, identified only by sequence analysis. We have now shown that purified SgtA has in vitro transglycosylase activity and that both MGT and SgtA are not essential in S. aureus. However, in the absence of PBP2 transglycosylase activity, MGT but not SgtA becomes essential for cell viability. This indicates that S. aureus cells require one transglycosylase for survival, either PBP2 or MGT, both of which can act as the sole synthetic transglycosylase for cell wall synthesis. We have also shown that both MGT and SgtA interact with PBP2 and other enzymes involved in cell wall synthesis in a bacterial two-hybrid assay, suggesting that these enzymes may work in collaboration as part of a larger, as-yet-uncharacterized cell wall-synthetic complex.  相似文献   

6.
Inhibition of cell division is critical for viability under DNA‐damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied. Here, we identify SosA as the staphylococcal SOS‐induced cell division inhibitor. Overproduction of SosA inhibits cell division, while sosA inactivation sensitizes cells to genotoxic stress. SosA is a small, predicted membrane protein with an extracellular C‐terminal domain in which point mutation of residues that are conserved in staphylococci and major truncations abolished the inhibitory activity. In contrast, a minor truncation led to SosA accumulation and a strong cell division inhibitory activity, phenotypically similar to expression of wild‐type SosA in a CtpA membrane protease mutant. This suggests that the extracellular C‐terminus of SosA is required both for cell division inhibition and for turnover of the protein. Microscopy analysis revealed that SosA halts cell division and synchronizes the cell population at a point where division proteins such as FtsZ and EzrA are localized at midcell, and the septum formation is initiated but unable to progress to closure. Thus, our findings show that SosA is central in cell division regulation in staphylococci.  相似文献   

7.
DivIVA is involved in placement of the division septum and chromosome segregation in Bacillus subtilis and it plays important roles in cell division or morphogenesis in diverse Gram-positive bacteria. In Staphylococcus aureus, DivIVA is localized at the division septum, but it does not colocalize with the chromosomal origin of replication, as labeled with SpoOJ protein. Unexpectedly, a divIVA null mutant is not impaired in growth, nor is it affected in chromosome segregation or cell morphology.  相似文献   

8.
9.
In response to a cell cycle signal, the cytoskeletal protein FtsZ assembles into a ring structure that establishes the location of the division site and serves as a framework for assembly of the division machinery. A battery of factors control FtsZ assembly to ensure that the ring forms in the correct position and at the precise time. EzrA, a negative regulator of FtsZ ring formation, is important for ensuring that the ring forms only once per cell cycle and that cytokinesis is restricted to mid-cell. EzrA is distributed throughout the plasma membrane and localizes to the ring in an FtsZ-dependent manner, suggesting that it interacts directly with FtsZ to modulate assembly. We have performed a series of experiments examining the interaction between EzrA and FtsZ. As little as twofold overexpression of EzrA blocks FtsZ ring formation in a sensitized genetic background, consistent with its predicted function. A purified EzrA fusion protein interacts directly with FtsZ to block assembly in vitro. Although EzrA is able to inhibit FtsZ assembly, it is unable to disassemble preformed polymers. These data support a model in which EzrA interacts directly with FtsZ at the plasma membrane to prevent polymerization and aberrant FtsZ ring formation.  相似文献   

10.
The emergence of multi-drug resistant bacterial pathogens is generating enormous public health concern, and highlights an urgent need for new, alternative agents for treating multi-drug-resistant pathogens. The gene products essential for bacterial growth in vitro and survival during infection constitute an initial set of protein targets for the development of antibacterial agents. In this study, we employed regulated gene expression approaches and demonstrated that a putative glycoprotease (Gcp) is required for staphylococcal growth in the culture. We found that Staphylococcus aureus becomes more sensitive to the Zn(2+) ion under the downregulation of Gcp expression in vitro. Bioinformatic analyses demonstrated that Gcp is conserved in many Gram-positive pathogens and exists in a variety of Gram-negative pathogens. Our results indicate that Gcp is a potential novel target for the development of antimicrobials against S. aureus infection.  相似文献   

11.
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.  相似文献   

12.
We have developed several new fluorescent staining procedures that enabled us to study the synthesis of cell wall material in the spherical Gram-positive bacterium Staphylococcus aureus. The results obtained support previous proposals that these cells synthesize new wall material specifically at cell division sites, in the form of a flat circular plate that is subsequently cleaved and remodelled to produce the new hemispherical poles of the daughter cells. We have shown that formation of the septal peptidoglycan is dependent on the key cell division protein FtsZ, which recruits penicillin-binding protein (PBP) 2. Unexpectedly, in FtsZ-depleted cells, the cell wall synthetic machinery becomes dispersed and new wall material is made in dispersed patches over the entire surface of the cells, which increase in volume by up to eightfold before lysing. The results have implications for understanding the nature of S. aureus morphogenesis and for inhibitors of cell division proteins as drug targets.  相似文献   

13.
Cryo-electron microscopy of frozen-hydrated thin sections permits the observation of the real distribution of mass in biological specimens allowing the native structure of bacteria to be seen, including the natural orientation of their surface layers. Here, we use this approach to study the fine ultrastructure of the division site, or septum, of Staphylococcus aureus D2C. Frozen-hydrated sections revealed a differentiated cell wall at the septum, showing two high-density regions sandwiched between three low-density zones. The two zones adjacent to the membrane appeared as an extension of the periplasmic space seen in this organism's cell envelope and showed no distinguishing structures within them. Immediately next to these were higher-density zones that corresponded to nascent cross walls of the septum. Unexpectedly, a rather broad low-density zone was seen separating cross walls in the septum. This mid-zone of low density appeared inflated and without visible structures in isolated cell walls, which showed only the high-density zones of the septum. Here, we suggest that frozen-hydrated thin sections have captured a highly fragile septal region, the mid-zone, which results from the dynamic action of autolysis and actively separates daughter cells during division. The two zones next to the membranes are periplasmic spaces. Immediately next to these are the growing cross walls composed of peptidoglycan, teichoic acid and protein.  相似文献   

14.
Multiple forms of lactate dehydrogenase in Staphylococcus aureus   总被引:3,自引:0,他引:3       下载免费PDF全文
Activities for nicotinamide adenine dinucleotide (NAD)-dependent and NAD-independent forms of lactate dehydrogenase (LDH) were measured in cell-free extracts of Staphylococcus aureus strain PS 6 for the d and l isomers of lactate. Data obtained for the NAD-dependent lactate dehydrogenases indicate that oxidation of both isomers of lactate is due to both an l-lactate-specific LDH and a lactate racemase. After acrylamide gel electrophoresis, two bands exhibiting LDH activity were detected in crude or in partially purified cell-free extracts. The fast band exhibited LDH activity that was not NAD-dependent for both isomers of lactate, whereas, the slow band had very high NAD-dependent LDH activity for the l isomer but just detectable activity or the d isomer. Both bands appeared when d-lactate was used as the substrate, but only the slow band was formed when l-lactate was the substrate. NAD-dependent LDH, in apparent association with a nonspecific tetrazolium-reducing protein, is responsible for the production of the slow band.  相似文献   

15.
McsA is a key modulator of stress response in Staphylococcus aureus that contains four CXXC potential metal-binding motifs at the N-terminal. Staphylococcus aureus ctsR operon encodes ctsR, clpC, and putative mcsA and mcsB genes. The expression of the ctsR operon in S. aureus was shown to be induced in response to various types of heavy metals such as copper and cadmium. McsA was cloned and overexpressed, and purified product was tested for metal-binding activity. The protein bound to Cu(II), Zn(II), Co(II), and Cd(II). No binding with any heavy metal except copper was found when we performed site-directed mutagenesis of Cys residues of three CXXC motifs of McsA. These data suggest that two conserved cysteine ligands provided by one CXXC motif are required to bind copper ions. In addition, using a bacterial two-hybrid system, McsA was found to be able to bind to McsB and CtsR of S. aureus and the CXXC motif was needed for the binding. This indicates that the Cys residues in the CXXC motif are involved in metal binding and protein interaction.  相似文献   

16.
To address the need for new approaches to antibiotic drug development, we have identified a large number of essential genes for the bacterial pathogen, Staphylococcus aureus, using a rapid shotgun antisense RNA method. Staphylococcus aureus chromosomal DNA fragments were cloned into a xylose-inducible expression plasmid and transformed into S. aureus. Homology comparisons between 658 S. aureus genes identified in this particular antisense screen and the Mycoplasma genitalium genome, which contains 517 genes in total, yielded 168 conserved genes, many of which appear to be essential in M. genitalium and other bacteria. Examples are presented in which expression of an antisense RNA specifically reduces its cognate mRNA. A cell-based, drug-screening assay is also described, wherein expression of an antisense RNA confers specific sensitivity to compounds targeting that gene product. This approach enables facile assay development for high throughput screening for any essential gene, independent of its biochemical function, thereby greatly facilitating the search for new antibiotics.  相似文献   

17.
The stringent response in Staphylococcus aureus is mediated by the nucleotide guanosine pentaphosphate, whose synthesis is catalyzed by the product of the rel gene. We report here that the rel gene is essential for the in vitro growth of S. aureus, distinguishing it from all other bacteria tested for this requirement.  相似文献   

18.
A strategy based on a vector host-dependent for autonomous replication, pSA3182, was utilized both for the rapid screening for Staphylococcus aureus genes essential for cell viability and for the introduction of specific polarity-neutral deletions in nonessential genes. The results obtained support the use of pSA3182 for both purposes.  相似文献   

19.
Lipoteichoic acid (LTA) is an important cell wall component of Gram‐positive bacteria. In Staphylococcus aureus it consists of a polyglycerolphosphate‐chain that is retained within the membrane via a glycolipid. Using an immunofluorescence approach, we show here that the LTA polymer is not surface exposed in S. aureus, as it can only be detected after digestion of the peptidoglycan layer. S. aureus mutants lacking LTA are enlarged and show aberrant positioning of septa, suggesting a link between LTA synthesis and the cell division process. Using a bacterial two‐hybrid approach, we show that the three key LTA synthesis proteins, YpfP and LtaA, involved in glycolipid production, and LtaS, required for LTA backbone synthesis, interact with one another. All three proteins also interacted with numerous cell division and peptidoglycan synthesis proteins, suggesting the formation of a multi‐enzyme complex and providing further evidence for the co‐ordination of these processes. When assessed by fluorescence microscopy, YpfP and LtaA fluorescent protein fusions localized to the membrane while the LtaS enzyme accumulated at the cell division site. These data support a model whereby LTA backbone synthesis proceeds in S. aureus at the division site in co‐ordination with cell division, while glycolipid synthesis takes place throughout the membrane.  相似文献   

20.
The observation that platelet-derived growth factor (PDGF) increases the catalytic activity of Src family members (Src) suggests that they contribute to PDGF-dependent responses. The role of Src in PDGF-dependent cell cycle progression, phosphorylation of proteins, and chemotaxis has been tested by investigators using a variety of cell types and approaches, and it appears that the contribution of Src is highly variable. This idea is perhaps best illustrated by the finding that Src plays radically different roles downstream of the PDGF alpha- and beta-receptor subunits. Hence, Src is a versatile signal relay enzyme, whose contribution to a signaling cascade depends on variables such as the nature of the receptor via which the cell is activated, as well as the cell type itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号