首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
BP1 is a negative modulator of definitive erythropoiesis   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
The mitochondrial respiratory chain is a modulator of apoptosis   总被引:1,自引:0,他引:1       下载免费PDF全文
Mitochondrial dysfunction and dysregulation of apoptosis are implicated in many diseases such as cancer and neurodegeneration. We investigate here the role of respiratory chain (RC) dysfunction in apoptosis, using mitochondrial DNA mutations as genetic models. Although some mutations eliminate the entire RC, others target specific complexes, resulting in either decreased or complete loss of electron flux, which leads to impaired respiration and adenosine triphosphate (ATP) synthesis. Despite these similarities, significant differences in responses to apoptotic stimuli emerge. Cells lacking RC are protected against both mitochondrial- and endoplasmic reticulum (ER) stress–induced apoptosis. Cells with RC, but unable to generate electron flux, are protected against mitochondrial apoptosis, although they have increased sensitivity to ER stress. Finally, cells with a partial reduction in electron flux have increased apoptosis under both conditions. Our results show that the RC modulates apoptosis in a context-dependent manner independent of ATP production and that apoptotic responses are the result of the interplay between mitochondrial functional state and environmental cues.  相似文献   

17.
The embryonic chick has the ability to regenerate its retina after it has been completely removed. Here, we provide a detailed characterization of retina regeneration in the embryonic chick at the cellular level. Retina regeneration can occur in two distinct manners. The first is via transdifferentiation, which is induced by members of the Fibroblast growth factor (Fgf) family. The second type of retinal regeneration occurs from the anterior margin of the eye, near the ciliary body (CB) and ciliary marginal zone (CMZ). We show that regeneration from the CB/CMZ is the result of proliferating stem/progenitor cells. This type of regeneration is also stimulated by Fgf2, but we show that it can be activated by Sonic hedgehog (Shh) overexpression when no ectopic Fgf2 is present. Shh-stimulated activation of CB/CMZ regeneration is inhibited by the Fgf receptor (Fgfr) antagonist, PD173074. This indicates that Shh-induced regeneration acts through the Fgf signaling pathway. In addition, we show that the hedgehog (Hh) pathway plays a role in maintenance of the retina pigmented epithelium (RPE), as ectopic Shh expression inhibits transdifferentiation and Hh inhibition increases the transdifferentiation domain. Ectopic Shh expression in the regenerating retina also results in a decrease in the number of ganglion cells present and an increase in apoptosis mostly in the presumptive ganglion cell layer (GCL). However, Hh inhibition increases the number of ganglion cells but does not have an effect on cell death. Taken together, our results suggest that the hedgehog pathway is an important modulator of retina regeneration.  相似文献   

18.
19.
The Drosophila circadian network is a seasonal timer   总被引:4,自引:0,他引:4  
Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. We have manipulated separately the circadian photoentrainment pathway within E- and M-cells and show that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号