首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The folding of the nucleosome chain into a chromatin fiber modulates DNA accessibility and is therefore an important factor for the control of gene expression. The fiber conformation depends crucially on the interaction between individual nucleosomes. However, this parameter has not been accurately determined experimentally, and it is affected by posttranslational histone modifications and binding of chromosomal proteins. Here, the effect of different internucleosomal interaction strengths on the fiber conformation was investigated by Monte Carlo computer simulations. The fiber geometry was modeled to fit that of chicken erythrocyte chromatin, which has been examined in numerous experimental studies. In the Monte Carlo simulation, the nucleosome shape was described as an oblate spherocylinder, and a replica exchange protocol was developed to reach thermal equilibrium for a broad range of internucleosomal interaction energies. The simulations revealed the large impact of the nucleosome geometry and the nucleosome repeat length on the compaction of the chromatin fiber. At high internucleosomal interaction energies, a lateral self-association of distant fiber parts and an interdigitation of nucleosomes were apparent. These results identify key factors for the control of the compaction and higher order folding of the chromatin fiber.  相似文献   

2.
3.
4.
The nucleosome complex of DNA wrapped around a histone protein octamer organizes the genome of eukaryotes and regulates the access of protein factors to the DNA. We performed molecular dynamics simulations of the nucleosome in explicit water to study the dynamics of its histone-DNA interactions. A high-resolution histone-DNA interaction map was derived that revealed a five-nucleotide periodicity, in which the two DNA strands of the double helix made alternating contacts. On the 100-ns timescale, the histone tails mostly maintained their initial positions relative to the DNA, and the spontaneous unwrapping of DNA was limited to 1–2 basepairs. In steered molecular dynamics simulations, external forces were applied to the linker DNA to investigate the unwrapping pathway of the nucleosomal DNA. In comparison with a nucleosome without the unstructured N-terminal histone tails, the following findings were obtained: 1), Two main barriers during unwrapping were identified at DNA position ±70 and ±45 basepairs relative to the central DNA basepair at the dyad axis. 2), DNA interactions of the histone H3 N-terminus and the histone H2A C-terminus opposed the initiation of unwrapping. 3), The N-terminal tails of H2A, H2B, and H4 counteracted the unwrapping process at later stages and were essential determinants of nucleosome dynamics. Our detailed analysis of DNA-histone interactions revealed molecular mechanisms for modulating access to nucleosomal DNA via conformational rearrangements of its structure.  相似文献   

5.
6.
7.
Genomic DNA is packaged in chromatin, a dynamic fiber variable in size and compaction. In chromatin, repeating nucleosome units wrap 145–147 DNA basepairs around histone proteins. Genetic and epigenetic regulation of genes relies on structural transitions in chromatin which are driven by intra- and inter-nucleosome dynamics and modulated by chemical modifications of the unstructured terminal tails of histones. Here we demonstrate how the interplay between histone H3 and H2A tails control ample nucleosome breathing motions. We monitored large openings of two genomic nucleosomes, and only moderate breathing of an engineered nucleosome in atomistic molecular simulations amounting to 24 μs. Transitions between open and closed nucleosome conformations were mediated by the displacement and changes in compaction of the two histone tails. These motions involved changes in the DNA interaction profiles of clusters of epigenetic regulatory aminoacids in the tails. Removing the histone tails resulted in a large increase of the amplitude of nucleosome breathing but did not change the sequence dependent pattern of the motions. Histone tail modulated nucleosome breathing is a key mechanism of chromatin dynamics with important implications for epigenetic regulation.  相似文献   

8.
9.
Single chromatin fibers were assembled directly in the flow cell of an optical tweezers setup. A single lambda phage DNA molecule, suspended between two polystyrene beads, was exposed to a Xenopus laevis egg extract, leading to chromatin assembly with concomitant apparent shortening of the DNA molecule. Assembly was force-dependent and could not take place at forces exceeding 10 pN. The assembled single chromatin fiber was subjected to stretching by controlled movement of one of the beads with the force generated in the molecule continuously monitored with the second bead trapped in the optical trap. The force displayed discrete, sudden drops upon fiber stretching, reflecting discrete opening events in fiber structure. These opening events were quantized at increments in fiber length of approximately 65 nm and are attributed to unwrapping of the DNA from around individual histone octamers. Repeated stretching and relaxing of the fiber in the absence of egg extract showed that the loss of histone octamers was irreversible. The forces measured for individual nucleosome disruptions are in the range of 20-40 pN, comparable to forces reported for RNA- and DNA-polymerases.  相似文献   

10.
11.
Based on model structures with atomic resolution, a coarse-grained model for the nucleosome geometry was implemented. The dependence of the chromatin fiber conformation on the spatial orientation of nucleosomes and the path and length of the linker DNA was systematically explored by Monte Carlo simulations. Two fiber types were analyzed in detail that represent nucleosome chains without and with linker histones, respectively: two-start helices with crossed-linker DNA (CL conformation) and interdigitated one-start helices (ID conformation) with different nucleosome tilt angles. The CL conformation was derived from a tetranucleosome crystal structure that was extended into a fiber. At thermal equilibrium, the fiber shape persisted but relaxed into a structure with a somewhat lower linear mass density of 3.1 ± 0.1 nucleosomes/11 nm fiber. Stable ID fibers required local nucleosome tilt angles between 40° and 60°. For these configurations, much higher mass densities of up to 7.9 ± 0.2 nucleosomes/11 nm fiber were obtained. A model is proposed, in which the transition between a CL and ID fiber is mediated by relatively small changes of the local nucleosome geometry. These were found to be in very good agreement with changes induced by linker histone H1 binding as predicted from the high resolution model structures.  相似文献   

12.
13.
Packaging of eukaryotic genomes into chromatin is a hierarchical mechanism, starting with histone deposition onto DNA to produce nucleosome arrays, which then further fold and ultimately form functional domains. Recent studies provide interesting insight into how nucleosome assembly is coordinated with histone and DNA metabolism and underline the combined contribution of histone chaperones and chromatin remodelers. How these factors operate at a molecular level is a matter of current investigation. New data highlight the importance of histone dimers as deposition entities for de novo nucleosome assembly and identify dedicated machineries involved in histone variant deposition.  相似文献   

14.
Using a combination of small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) measurements we have determined the role of the H3 and H4 histone tails, independently, in stabilizing the nucleosome DNA terminal ends from unwrapping from the nucleosome core. We have performed solution scattering experiments on recombinant wild-type, H3 and H4 tail-removed mutants and fit all scattering data with predictions from PDB models and compared these experiments to complementary DNA-end FRET experiments. Based on these combined SAXS and FRET studies, we find that while all nucleosomes exhibited DNA unwrapping, the extent of this unwrapping is increased for nucleosomes with the H3 tails removed but, surprisingly, decreased in nucleosomes with the H4 tails removed. Studies of salt concentration effects show a minimum amount of DNA unwrapping for all complexes around 50-100mM of monovalent ions. These data exhibit opposite roles for the positively-charged nucleosome tails, with the ability to decrease access (in the case of the H3 histone) or increase access (in the case of the H4 histone) to the DNA surrounding the nucleosome. In the range of salt concentrations studied (0-200mM KCl), the data point to the H4 tail-removed mutant at physiological (50-100mM) monovalent salt concentration as the mononucleosome with the least amount of DNA unwrapping.  相似文献   

15.
16.
Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here, we investigate the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations on several microsecond time scale, we generate extensive atomistic conformational ensembles of full nucleosomes. Our results reveal that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, narrowing the adjacent minor grooves, and shifting the population equilibrium of sugar-phosphate backbone geometry. These DNA conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3–4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microseconds time scale.  相似文献   

17.
The activity of uracil DNA glycosylases (UDGs), which recognize and excise uracil bases from DNA, has been well characterized on naked DNA substrates but less is known about activity in chromatin. We therefore prepared a set of model nucleosome substrates in which single thymidine residues were replaced with uracil at specific locations and a second set of nucleosomes in which uracils were randomly substituted for all thymidines. We found that UDG efficiently removes uracil from internal locations in the nucleosome where the DNA backbone is oriented away from the surface of the histone octamer, without significant disruption of histone-DNA interactions. However, uracils at sites oriented toward the histone octamer surface were excised at much slower rates, consistent with a mechanism requiring spontaneous DNA unwrapping from the nucleosome. In contrast to the nucleosome core, UDG activity on DNA outside the core DNA region was similar to that of naked DNA. Association of linker histone reduced activity of UDG at selected sites near where the globular domain of H1 is proposed to bind to the nucleosome as well as within the extra-core DNA. Our results indicate that some sites within the nucleosome core and the extra-core (linker) DNA regions represent hot spots for repair that could influence critical biological processes.  相似文献   

18.
19.
A coarse-grained model of the nucleosome is introduced to investigate the dynamics of force-induced unwrapping of DNA from histone octamers. In this model, the DNA is treated as a charged, discrete worm-like chain, and the octamer is treated as a rigid cylinder carrying a positively charged superhelical groove that accommodates 1.7 turns of DNA. The groove charges are parameterized to reproduce the nonuniform histone/DNA interaction free energy profile and the loading rate-dependent unwrapping forces, both obtained from single-molecule experiments. Brownian dynamics simulations of the model under constant loading conditions reveal that nucleosome unraveling occurs in three distinct stages. At small extensions, the flanking DNA exhibits rapid unwrapping-rewrapping (breathing) dynamics and the octamer flips ~180° and moves toward the pulling axis. At intermediate extensions, the outer turn of DNA unwraps gradually and the octamer swivels about the taut linkers and flips a further ~90° to orient its superhelical axis almost parallel to the pulling axis. At large extensions, a portion of the inner turn unwraps abruptly with a notable rip in the force-extension plot and a >90° flip of the octamer. The remaining inner turn unwraps reversibly to leave a small portion of DNA attached to the octamer despite extended pulling. Our simulations further reveal that the nonuniform histone/DNA interactions in canonical nucleosomes serve to: stabilize the inner turn against unraveling while enhancing the breathing dynamics of the nucleosome and prevent dissociation of the octamer from the DNA while facilitating its mobility along the DNA. Thus, the modulation of the histone/DNA interactions could constitute one possible mechanism for regulating the accessibility of the nucleosome-wound DNA sequences.  相似文献   

20.
In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kinematics problem. Our model is based on recent electron microscopy measurements of reconstituted fiber dimensions. Strikingly, we find that the chromatin fiber containing linker histones is a polymorphic structure. We show that different fiber conformations are obtained by tuning the linker histone orientation at the nucleosomes entry/exit according to the nucleosomal repeat length. We propose that the observed in vivo quantization of nucleosomal repeat length could reflect nature's ability to use the DNA molecule's helical geometry in order to give chromatin versatile topological and mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号