首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural and functional analysis of the reducing side of photosystem I   总被引:2,自引:0,他引:2  
Structural analysis of the reducing side of photosystem I (PSI) has been carried out using chemical cross-linking and monospecific antibodies. Incubation of PSI isolated from barley (Hordeum vulgare L.) with the hydrophilic cross-linking agent N-ethyl-3-[3-(dimethylamino) propyl]-carbodiimide leads to cross-linking of the PSI-D subunit with the PSI-E and PSI-H subunits. In the presence of ferredoxin, cross-linking results in the formation of cross-linked products composed of PSI-D, PSI-E and ferredoxin and in a block in steady state NADP+ photoreduction. No cross-linking of ferredoxin occurs at elevated ionic strength or using heat-denatured ferredoxin. Cross-linking of ferredoxin does not inhibit electron transfer from plastocyanin to methyl viologen. Steady state NADP+ photoreduction was analyzed in PSI or thyla-koids incubated with antibodies against individual PSI subunits. Incubation with antibodies against PSI-C, -H, -I, or -L had no effect on PSI activity, whereas antibodies against PSI-D or PSI-E had similar effects and caused a large decrease in activity. The results provide evidence that the PSI-D and PSI-E subunits are localized on the reducing side of PSI, forming a barrier between PSI-C and the stroma as well as a docking site for ferredoxin. The PSI-H subunit has an exposed, stromal domain but this does not appear to contribute to the ferredoxin docking.  相似文献   

2.
F Rousseau  P Stif    B Lagoutte 《The EMBO journal》1993,12(5):1755-1765
Of the stroma-accessible proteins of photosystem I (PSI) from Synechocystis sp. PCC 6803, the PSI-C, PSI-D and PSI-E subunits have already been characterized, and the corresponding genes isolated. PCR amplification and cassette mutagenesis were used in this work to delete the psaE gene. PSI particles were isolated from this mutant, which lacks subunit PSI-E, and the direct photoreduction of ferredoxin was investigated by flash absorption spectroscopy. The second order rate constant for reduction of ferredoxin by wild type PSI was estimated to be approximately 10(9) M-1s-1. Relative to the wild type, PSI lacking PSI-E exhibited a rate of ferredoxin reduction decreased by a factor of at least 25. After reassociation of the purified PSI-E polypeptide, the original rate of electron transfer was recovered. When a similar reconstitution was performed with a PSI-E polypeptide from spinach, an intermediate rate of reduction was observed. Membrane labeling of the native PSI with fluorescein isothiocyanate allowed the isolation of a fluorescent PSI-E subunit. Peptide analysis showed that some residues following the N-terminal sequence were labeled and thus probably accessible to the stroma, whereas both N- and C-terminal ends were probably buried in the photosystem I complex. Site-directed mutagenesis based on these observations confirmed that important changes in either of the two terminal sequences of the polypeptide impaired its correct integration in PSI, leading to phenotypes identical to the deleted mutant. Less drastic modifications in the predicted stroma exposed sequences did not impair PSI-E integration, and the ferredoxin photoreduction was not significantly affected. All these results lead us to propose a structural role for PSI-E in the correct organization of the site involved in ferredoxin photoreduction.  相似文献   

3.
4.
5.
Molecular aspects of photosystem I   总被引:2,自引:0,他引:2  
Photosystem I (PSI) in higher plants consists of 17 polypeptide subunits. Cofactors are chlorophyll a and b , β-carotene, phylloquinone and iron-sulfur clusters. Eight subunits are specific for higher plants while the remaining ones are also present in cyanobacteria. Two 80-kDa subunits (PSI-A and -B) constitute the major part of PSI and bind most of the pigments and electron donors and acceptors. The 9-kDa PSI-C carries the remaining electron acceptors which are [4Fe-4S] iron sulfur clusters. PSI-D, -E and -H have importance for integrity and function at the stromal face of PSI while PSI-F has importance for function at the lumenal face. PSI-N is localized at the lumenal side, but its function is unknown. Four subunits are light-harvesting chlorophyll a/b -binding proteins. The remaining subunits are integral membrane proteins with poorly understood function. Subunit interactions have been studied in reconstitution experiments and by cross-linking studies. Based on these data, it is concluded that iron-sulfur cluster FB is proximal to FX and that FA is the terminal acceptor in PSI. Similarities between PSI and the reaction center from green sulfur bacteria are discussed.  相似文献   

6.
NADP+-malic enzyme ( l -malate: NADP+ oxidoreductase, decarboxylating EC 1.1.1.40) from pod walls of chickpea was purified 51-fold by ammonium sulphate fractionation, DEAE- cellulose chromatography and gel filtration through Sepharose 4B. The purified enzyme required a divalent cation, either Mn2+ or Mg2+, for its activity. Km values at pH 7.8 for malate, NADP+ and Mn2+ were 4.0, 0.031 and 0.71 m M , respectively. Mn2+-dependent activity was inhibited by heavy metal ions such as Cd2+, Zn2+, Hg2+, and to a lesser extent by Pb2+ and Al3+. Among the organic acids examined, sodium salts of oxalate and oxaloacetate were inhibitory. Kinetics of the reaction mechanism showed sequential binding of malate and NADP+ to the enzyme. Products of reaction, viz. pyruvate, bicarbonate and NADPH, inhibited the enzyme activity. At limiting concentrations of NADP+, pyruvate and bicarbonate induced a positive cooperative effect by malate. It is proposed that the activity of NADP+-malic enzyme is controlled by intracellular concentrations of substrates and products.  相似文献   

7.
In addition to an inhibitory effect on the photoreduction of NADP+ by isolated spinach chloroplasts ( Spinacea oleracea L. cv. Melody Hybrid), sulfide initiated oxygen uptake by chloroplasts upon illumination, both in presence and absence of an electron acceptor. Sulfide-induced oxygen uptake was sensitive to DCMU demonstrating the involvement of photosynthetic electron transport. Addition of superoxide dismutase to the chloroplast suspension prevented the sulfide-induced oxygen uptake, which indicated that sulfide may be oxidized by the chloroplast, its oxidation being initiated by superoxide formed upon illumination (at the reducing side of PSI). Tris-induced inhibition of NADP+ photo-reduction could not be abolished by sulfide, which indicated that sulfide could not act as an electron donor for PSI.  相似文献   

8.
Photosystem 1 (PSI) preparations from barley (Hordeum vulgare) and spinach (Spinacia oleracea) were subjected to chemical cross-linking using the cleavable homobifunctional cross-linkers dithiobis(succinimidylpropionate) and 3,3'-dithiobis(sulfosuccinimidyl-propionate). The overall pattern of cross-linked products was analyzed by the simple but powerful technique of diagonal electrophoresis, in which the disulfide bond in the cross-linker was cleaved between the first and second dimensions of the gel, and immunoblotting. A large number of cross-linked products were identified. Together with preexisting data on the structure of PSI, it was deduced that the subunits PSI-D, PSI-H, PSI-I, and PSI-L occupy one side of the complex, whereas PSI-E, PSI-F, and PSI-J occupy the other. PSI-K and PSI-G appear to be adjacent to Lhca3 and Lhca2, respectively, and not close to the other small subunits. Experiments with isolated light-harvesting complex I preparations indicate that the subunits are organized as dimers, which seem to associate to the PSI-A/PSI-B proteins independent of each other. We suggest which PSI subunit corresponds to each membrane-spanning helix in the cyanobacterial PSI structure, and present a model for higher-plant PSI.  相似文献   

9.
The redox level and compartmentation of pyridine nucleotides was studied under photorespiratory and non-photorespiratory conditions using rapid fractionation of barley ( Hordeum vulgare L. cv. Gunilla, Svalöv) leaf protoplasts. From comparative measurements of the NADPH/NADP+ ratio and the ATP/ADP ratio one acidic and one alkaline extraction medium was chosen which quenched the metabolism very efficiently. The mitochondrial NADH/NAD+ was higher under photorespiratory conditions than under non-photorespiratory conditions. Aminoacetonitrile, an inhibitor of the photorespiratory conversion of glycine to serine, lowered the mitochondrial NADH/NAD+ ratio. This supports the hypothesis that glycine oxidation is coupled to oxidative phosphorylation to provide ATP to the cytosol. The chloroplastic NADPH/NADP+ as well as the NADH/NAD+ ratios were quite stable in saturating and limiting CO2 as well as in the presence of aminoacetonitrile, although the triosephosphate/phosphoglycerate ratios changed. Thus, the redox level in the stroma seems to be tightly regulated.  相似文献   

10.
The activity of NADP+-dependent isocitrate dehydrogenase (ICDH, EC 1.1.1.42) was investigated during the post-germinative growth of cucumber ( Cucumis sativus L. cv. Marketmore) seedlings. Isoelectric focusing showed the presence of several isoenzymes, two of which represented 70–80% of the total NADP+-ICDH activity in cotyledons of seedlings grown in the dark. They had pI values between 4.8 and 5.8. The isoenzyme with higher pI was purified to homogeneity by hydrophobic interaction, affinity, hydroxylapatite and anion exchange chromatography. The purified isoenzyme is a dimeric protein, consisting of two apparently identical 43-kDa subunits. It is specific for NADP+, inhibited by ATP and by 2-oxoglutarate, whereas it is not inhibited by citrate, succinate, and glyoxylate. The data indicate that NADP+-ICDH from cucumber is structurally similar to ICDHs from other plants, but it shows some peculiar biochemical characteristics.  相似文献   

11.
NADP+-dependent malic enzyme (L-malate : NADP+ oxidoreductase, decarboxylating, EC 1.1.1.40) was extracted from the leaves of yellow lupine. The purification procedure included fractionation with (NH4)2SO4 and Sephadex G-25 chromatography, followed by purification on DEAE-cellulose and Sephadex G-200 columns. The enzyme was purified 122-fold. The enzyme affinity towards L-malate was found to be significantly higher with Mn2+ than with Mg2+. The Hill coefficient for Mg2+ depended on concentration and was 1.6 for the lower and 3.9 for the higher concentrations. The dependence of the enzyme activity on NADP+ followed a hyperbolic curve. Km values and Hill coefficients for NADP+ were similar with both Mn2+ and Mg2+. The enzyme activity was strictly dependent on divalent cations and followed a sigmoidal curve at least for Mg2+. The enzyme had 4-fold higher affinity towards Mn2+ than towards Mg2+, the Km values being 0.3 and 1.15 m M respectively. Of several tested organic acids, oxalate was the most effective inhibitor followed by oxaloacetate while succinate was the strongest activator.  相似文献   

12.
Changes in the extent of P700 oxidation (P700+) were investigated after chilling of barley, rice, pumpkin, and cucumber leaf segments at 4°C for 1 h under light with various photon flux densities. At 50 µmol photons m−2 s−1, the decrease in P700+ was observed only in cucumber, but at 150 µmol photons m−2 s−1, it was found in all plants except barley, revealing their expected chilling sensitivities. However, the decrease in P700+ by this short-term chilling was reversible in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or methyl viologen, and it did not show any causal relationship with the decrease in the electron transfer rate nor with the down-regulation of photosystem II through the accumulation of zeaxanthin and the development of non-photochemical quenching. These results led to the suggestion that photosystem I (PSI) acceptor side limitation is a prerequisite for the decrease of P700+. Furthermore, PSI acceptor side limitation could be mainly due to limitation of electron-sink pathways such as CO2 assimilation and ascorbate–glutathione cycle, because treatment with glycolaldehyde which inhibits the former pathway, and with KCN which inhibits both pathways, decreased P700+ by 20–30% in barley leaves after chilling in the light.  相似文献   

13.
The reductive carboxylation of α-ketoglutarate by purified NADP+-isocitrate dehydrogenase (EC 1.1.1.42) from maturing castor bean seeds ( Ricinus communis L. ) has been characterized. The optimum pH for the reaction was 6.5, whereas pH 8.5 was optimum for oxidation of isocitrate (forward reaction). The enzyme utilized NADH as well as NADPH as the reducing agent in the reverse reaction, but only NADP+ in the forward reaction. The Km values for NADPH and NADH were 0.044 and 2.8 m M respectively, and for α-ketoglutarate and HCO3 4.1 and 3.7 m M. The enzyme was activated by various cations including Mg2+, Mn2+, Co2+, Zn2+, Ni2+ and Co2+. Km values for Mg2+ Mn2+, Co2+ and Zn2+ were 12, 34, 37 and 49μ M respectively.  相似文献   

14.
Structural studies have been conducted on polypeptides PSI-D and PSI-E, which are extrinsic but firmly bound to the photosystem I reaction center. These subunits are predicted to be involved in the correct interaction with soluble electron acceptor(s), like ferredoxin. We designed an original method to extract both polypeptides directly from thylakoid membranes and to purify them: a stepwise extraction with NaSCN followed by size fractionation and reverse-phase HPLC. Investigation of the in situ topology of PSI-D and PSI-E was undertaken using monoclonal antibody binding, controlled proteolysis, peptide sequencing and electron microscopy. The precise identification of numerous proteolytic sites indicates that the entire N-terminal regions of PSI-E (up to Glu15) and PSI-D (up to Lys15) are exposed to the medium. Partial mapping of the exposed epitopes was possible using purified fragments of each polypeptide. In the case of PSI-E, this mapping confirmed the accessibility of the N-terminal part, and suggested the need for another exposed sequence, probably located after Met39 in the second half of the protein. For PSI-D, this mapping revealed that the sequence between Met74 and Met140, including the most basic amino acid clusters, is also partly accessible. These experiments provide the first detailed informations, although still partial, on the topology of these polypeptides. They give a preliminary basis for hypotheses concerning the sites of interaction with the soluble counterparts.  相似文献   

15.
The effect of several metal ions on NADP+-malic enzyme (EC 1.1.1.40) purified from Zea mays L. leaves was studied Mg2+, Mn2+, Co2+ and Cd2+ were all active metal cofactors. The malic enzyme from maize has a moderately high intrinsic preference for Mn2+ relative to Mg2+ at pH 7.0 and 8.0 Negative cooperativity detected in the binding of Mg2+ at pH 7.0 and 8.0 and in the binding of Mn2+ at pH 7.0 suggests the existence of at least two binding sites with different affinity. All of the activating metal ions have preference for octahedral coordination geometry and have ionic radii of 0.86–1.09 Å. The ions that act as inhibitors are outside this range and/or are incapable of octahedral coordination. Ba2+, Sr2+, Cd2+, Ca2+, Be2+, Ni2+, Cu2+, Zn2+, Co2+, Hg2+ showed mixed-type inhibition. The reciprocal of their K1 values follow the order of their apparence in the Irving-Williams series of stability that derives in part from size effects. It is suggested that the size of the ions may play a partial role in determining the strength of the metal interaction.  相似文献   

16.
Tobacco ( Nicotiana tabacum L. cv. Samsun) plants were treated once with 2,4-dichlorophenoxyacetic acid (2,4-D) at the 8-leaf stage. The effect of the herbicide on leaf metabolism was followed over 7 days by determination of the ribonucleotide pools, including NAD+, NADP+ and UDP-sugars, by high-preformance liquid chromatography. 2,4-D treatment resulted in large changes in the nucleotide concentrations, the magnitude and sign of which were dependent upon the leafage. The nucleotide pools decreased in the apical tissue, but increased strongly in the mature leaves with the highest relative increase in the oldest leaf tested. The time course of the changes revealed a maximum on day 5 after 2,4-D treatment. The increase in the adenine nucleotide pools, energy charge and the NADVNADP+ ratio are interpreted to indicate a stress situation. The different responses of young, mature and senescent tissue to the synthetic auxin could reflect their different inherent sensitivity due to the natural auxin gradient.  相似文献   

17.
Six-month-old water cultures of Pinus radiataI D. Don seedlings showed optimal growth, and the highest CO2 assimilation and photosystem I-dependent ascorbate/dichlorophenolindophenol → NADP+ electron flow, at 3.0 uM Cu2+ (excess) in the hydroponic media. In the nine-month-old water cultures, when the early Cu deprivation has been overcome, the optimum for plant growth and CO2 fixation shifts to 0.3 u M Cu2+ (normal); at that time, the 3.0 uM Cu2+ water cultures showed toxic symptoms of foliar chlorosis. Under Cu2+ deficient levels (0.03 uM) a clear decrease in the photosystem I-linked electron transport and CO2 assimilation rates, as well as in the whole plant development, could be observed. Both six- and nine-month-old water cultures showed a close relationship between the Cu2+ concentration of the media and the foliar Cu content. However, leaf chlorophyll and the Cu content of thylakoid lamellae showed such a correlation only in the Cu2+ deficient and Cu2+ normal water cultures. The conclusion from these results is that the electron transport rate ascorbate/dicblorophenolindophenol → NADP+, and the Cu content of the photosynthetic membranes, can be used to diagnose a Cu deficiency in Pinus radiata plants.  相似文献   

18.
Five-week-old plants of Echinochloa crusgalli (L.) Beauv. from Mississippi and from Québec grown under controlled conditions were subjected to dark chilling for 10 h at 5°C or light chilling treatments for 14 h at 7°C under hight light (1 000 μmol m−2 s−1). The activities of four C4 enzymes of Québec plants, measured 4 h after the completion of the cold treatment, were not affected by the chilling treatment in the dark. The activities of pyruvate, Pi dikinase (PPDK; EC 2.7.9.1) and NADP+-malic enzyme (NADP+-ME; EC 1.1.1.40), were significantly reduced in dark-chilled Mississippi plants. Chilling under high light conditions elicited significant levels of reduction in the activities of the four enzymes from both ecotypes but the reductions were significantly less severe for Québec plants. The recovery of activities of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) and PPDK for both ecotypes was completed within 36 to 60 hours following the chilling treatment, but NADP+-malate dehydro-genase (NADP+-MDH; EC 1.1.1.82) and NADP+-ME activities of chilled Mississippi plants remained below that of control plants at the end of the 5-day monitoring period. PPDK was inactivated in vitro at 0 and 10°C and the rates of cold inactivation were significantly higher for PPDK extracted from Mississippi plants. The activity of PEPC of Mississippi extracts was slightly, but significantly reduced by a 60 min treatment at 0°C.  相似文献   

19.
NADP+-isocitrate dehydrogenase (EC 1.1.1.42) was purified more than 1500-fold from the host-plant cytosol of Medicago sativa L. cv. Saranac root nodules by ion exchange and affinity chromatography. The forward reaction was characterized. The enzyme exhibited an absolute requirement for a divalent cation (preferably Mn2+), had a broad activity optimum from pH 7.5 to 9.0, and was most stable at pH 7.5. The apparent Arrhenius energy of activation was 70.7 kJ mol−1 (20 to 30°C) indicating that the reaction rate of the enzyme was relatively sensitive to temperature. The Km for isocitrate was 20 μ M and for NADP+ 10.7 μ M . Initial velocity and end product inhibition studies of the forward reaction indicate a random bi ter mechanism. End product studies indicated that NADPH was a competitive inhibitor and α-ketoglutarate was a non-competitive inhibitor with respect to isocitrate and NADP+. Citrate was a competitive inhibitor with respect to isocitrate. Glutamine was identified as a positive effector when assays were conducted at non-saturating isocitrate concentrations. The potential significance of glutamine regulation of α-ketoglutarate production in a dinitrogen-fixing tissue is discussed.  相似文献   

20.
The nature of the aggregated form of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes (GPD, EC 1.2.1.13) from Chenopodium rubrum leaves was investigated. After disaggregation of the isozymes in NADP + buffer, and resuspension of the disaggregated isozymes in NAD+ buffer, complete reaggregation could only be achieved by remixing the enzyme with a high molecular weight fraction, from which the isozymes had dissociated during the NADP+ filtration. After separation of the isozymes by inverse ammonium sulphate gradient solubilization, spontaneous extensive reaggregation of each isozyme was observed in NAD+ buffer. The high molecular weight material consisted of ribonucleoprotein, and RNase treatment impaired its ability to promote reaggregation of chloroplast GPD. It is proposed that pyridine nucleotide-controlled aggregation and binding to ribonucleoprotein in vitro are artifacts which reflect an in situ binding to cellular components. Since uncontrolled NAD+-linked activities of the bifunctional isozymes in the chloroplast would lead to an equalization of the NAD + and NADP + redox couples, it is suggested that the reversible binding of the isozymes forms the basis of a regulatory system in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号