首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roles of fascin in cell adhesion and motility   总被引:24,自引:0,他引:24  
Many cell interactions depend on the assembly of cell protrusions; these include cell attachment and migration in the extracellular matrix, cell-cell communication, and the ability of cells to sense their local environment. Cell protrusions are extensions of the plasma membrane that are supported internally by actin-based structures that impart mechanical stiffness. Fascin is a small, globular actin-bundling protein that has emerging roles in diverse forms of cell protrusions and in cytoplasmic actin bundles. The fascin-actin interaction is under complex regulation from the extracellular matrix, peptide factors and other actin-binding proteins. Recent developments advance our understanding of the multifaceted regulation of fascin and the roles of fascin-containing structures in cell adhesion, motility and invasion in the life of vertebrate organisms.  相似文献   

2.
3.
Transient elevations in Ca2+ have previously been shown to promote focal adhesion disassembly and cell motility through an unknown mechanism. In this study, evidence is provided to show that CaMK-II, a Ca2+/calmodulin dependent protein kinase, influences fibroblast adhesion and motility. TIRF microscopy reveals a dynamic population of CaMK-II at the cell surface in migrating cells. Inhibition of CaMK-II with two mechanistically distinct, membrane permeant inhibitors (KN-93 and myr-AIP) freezes lamellipodial dynamics, accelerates spreading on fibronectin, enlarges paxillin-containing focal adhesions and blocks cell motility. In contrast, constitutively active CaMK-II is not found at the cell surface, reduces cell attachment, eliminates paxillin from focal adhesions and decreases the phospho-tyrosine levels of both FAK and paxillin; all of these events can be reversed with myr-AIP. Thus, both CaMK-II inhibition and constitutive activation block cell motility through over-stabilization or destabilization of focal adhesions, respectively. Coupled with the existence of transient Ca2+ elevations and a dynamic CaMK-II population, these findings provide the first direct evidence that CaMK-II enables cell motility by transiently and locally stimulating tyrosine dephosphorylation of focal adhesion proteins to promote focal adhesion turnover.  相似文献   

4.
Gastrulation movements are critical for establishing the three germ layers and the architecture of vertebrate embryos. During Xenopus laevis gastrulation, mesodermal tissue migrates on the blastocoel roof and elongates along the antero-posterior axis. During this process, cells in the dorsal mesoderm are polarized and intercalate with each other, which is defined as convergent extension and is known to be regulated by the non-canonical Wnt pathway. Here, we show that paxillin plays an essential role in this process. Paxillin is a focal-adhesion associated protein implicated in the regulation of actin cytoskeletal organization and cell motility, but its role in Xenopus embryogenesis has not yet been clarified. We demonstrate that the Wnt pathway controls the ubiquitination and stability of paxillin, and that this regulatory mechanism is essential for convergent extension movements. We identified a RING finger protein XRNF185, which physically binds to paxillin and the proteasome. XRNF185 destabilizes paxillin at focal adhesions and promotes mesodermal cell migration during convergent extension. We propose a mechanism to regulate gastrulation movements that involves paxillin ubiquitination and stability controlled by Wnt signalling.  相似文献   

5.
《The Journal of cell biology》1996,135(4):1109-1123
Paxillin is a 68-kD focal adhesion phosphoprotein that interacts with several proteins including members of the src family of tyrosine kinases, the transforming protein v-crk, and the cytoskeletal proteins vinculin and the tyrosine kinase, focal adhesion kinase (FAK). This suggests a function for paxillin as a molecular adaptor, responsible for the recruitment of structural and signaling molecules to focal adhesions. The current study defines the vinculin- and FAK-interaction domains on paxillin and identifies the principal paxillin focal adhesion targeting motif. Using truncation and deletion mutagenesis, we have localized the vinculin-binding site on paxillin to a contiguous stretch of 21 amino acids spanning residues 143-164. In contrast, maximal binding of FAK to paxillin requires, in addition to the region of paxillin spanning amino acids 143-164, a carboxyl-terminal domain encompassing residues 265-313. These data demonstrate the presence of a single binding site for vinculin, and at least two binding sites for FAK that are separated by an intervening stretch of 100 amino acids. Vinculin- and FAK-binding activities within amino acids 143-164 were separable since mutation of amino acid 151 from a negatively charged glutamic acid to the uncharged polar residue glutamine (E151Q) reduced binding of vinculin to paxillin by >90%, with no reduction in the binding capacity for FAK. The requirement for focal adhesion targeting of the vinculin- and FAK-binding regions within paxillin was determined by transfection into CHO.K1 fibroblasts. Significantly and surprisingly, paxillin constructs containing both deletion and point mutations that abrogate binding of FAK and/or vinculin were found to target effectively to focal adhesions. Additionally, expression of the amino-terminal 313 amino acids of paxillin containing intact vinculin- and FAK-binding domains failed to target to focal adhesions. This indicated other regions of paxillin were functioning as focal adhesion localization motifs. The carboxyl-terminal half of paxillin (amino acids 313-559) contains four contiguous double zinc finger LIM domains. Transfection analyses of sequential carboxyl-terminal truncations of the four individual LIM motifs and site-directed mutagenesis of LIM domains 1, 2, and 3, as well as deletion mutagenesis, revealed that the principal mechanism of targeting paxillin to focal adhesions is through LIM3. These data demonstrate that paxillin localizes to focal adhesions independent of interactions with vinculin and/or FAK, and represents the first definitive demonstration of LIM domains functioning as a primary determinant of protein subcellular localization to focal adhesions.  相似文献   

6.

Background

Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression.

Methodology/Principal Findings

We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration.

Conclusions/Significance

Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.  相似文献   

7.
LimC and LimD are two novel LIM proteins of Dictyostelium, which are comprised of double and single LIM domains, respectively. Green fluorescent protein-fused LimC and LimD proteins preferentially accumulate at areas of the cell cortex where they co-localize with actin and associate transiently with cytoskeleton-dependent dynamic structures like phagosomes, macropinosomes and pseudopods. Furthermore, both LimC and LimD interact directly with F-actin in vitro. Mutant cells that lack either LimC or LimD, or both, exhibit normal growth. They are, however, significantly impaired in growth under stress conditions and are highly sensitive to osmotic shock, suggesting that LimC and LimD contribute towards the maintenance of cortical strength. Moreover, we noted an altered morphology and F-actin distribution in LimD(-) and LimC(-)/D(-) mutants, and changes in chemotactic motility associated with an increased pseudopod formation. Our results reveal both unique and overlapping roles for LimC and LimD, and suggest that both act directly on the actin cytoskeleton and provide rigidity to the cortex.  相似文献   

8.
The focal adhesion protein p130(Cas) was identified as a substrate for the protein-tyrosine phosphatase (PTP)-PEST, and the specificity of this interaction is mediated by a dual mechanism involving a Src homology 3 domain-mediated binding and PTP domain recognition. Recently, paxillin was also demonstrated to interact with PTP-PEST (Shen, Y., Schneider, G., Cloutier, J. F., Veillette, A., and Schaller, M. D. (1998) J. Biol. Chem. 273, 6474-6481). In the present study, we show that amino acids 344-397 of PTP-PEST are sufficient for the binding to paxillin. We demonstrate that a proline-rich segment of PTP-PEST (Pro 2), 355PPEPHPVPPILTPSPPSAFP374, is essential for this interaction in vivo. Furthermore, mutation of proline residues within the Pro 2 motif reveal that proline 362 is critical for the binding of paxillin. Conversely, using deletion and point mutants of paxillin, LIM 3 and 4 domains were both found to be necessary for binding of PTP-PEST. Finally, using a "substrate trapping" approach, we demonstrate that, unlike p130(Cas), paxillin is not a substrate for PTP-PEST. In conclusion, we show that a novel proline-rich motif found in PTP-PEST serves as a ligand for the LIM domains of paxillin. Interestingly, the focal adhesion targeting of paxillin is mediated by LIM 3. Thus, we propose that PTP-PEST, by a competition with the ligand of paxillin in the focal adhesion complex, could contribute to the removal of paxillin from the adhesion sites and consequently promote focal adhesion turnover.  相似文献   

9.
《The Journal of cell biology》1995,130(5):1181-1187
The integrins have recently been implicated in signal transduction. A likely mediator of integrin signaling is focal adhesion kinase (pp125FAK or FAK), a structurally distinct protein tyrosine kinase that becomes enzymatically activated upon engagement of integrins with their ligands. A second candidate signaling molecule is paxillin, a focal adhesion associated, cytoskeletal protein that coordinately becomes phosphorylated on tyrosine upon activation of pp125FAK. Paxillin physically complexes with two protein tyrosine kinases, pp60src and Csk (COOH-terminal src kinase), and the oncoprotein p47gag-crk, each of which could function as part of a paxillin signaling complex. Using an in vitro assay we have established that the cytoplasmic domain of the beta 1 integrin can bind to paxillin and pp125FAK from chicken embryo cell lysates. The NH2-terminal, noncatalytic domain of pp125FAK can bind directly to the cytoplasmic tail of beta 1 and recognizes integrin sequences distinct from those involved in binding to alpha-actinin. Paxillin binding is independent of pp125FAK binding despite the fact that both bind to the same region of beta 1. These results demonstrate that the cytoplasmic domain of the beta subunits of integrins contain binding sites for both signaling molecules and structural proteins suggesting that integrins can coordinate the generation of cytoplasmic signals in addition to their role in anchoring components of the cytoskeleton.  相似文献   

10.
Slender bundled actin containing plasma membrane protrusions, called filopodia, are important for many essential cellular processes like cell adhesion, migration, angiogenesis and the formation of cell-cell contacts. In migrating cells, filopodia are the pioneers at the leading edge which probe the environment for cues. Integrins are cell surface adhesion receptors critically implicated in cell migration and they are transported actively to filopodia tips by an unconventional myosin, myosin-X. Integrin mediated adhesion stabilizes filopodia and promotes cell migration even though integrins are not essential for filopodia initiation. Myosin-X binds also PtdIns(3,4,5)P3 and this regulates its activation and localization to filopodia. Filopodia stimulate cell migration in many cell types and increased filopodia density has been described in cancer. Furthermore, several proteins implicated in filopodia formation, like fascin, are also relevant for cancer progression. To investigate this further, we performed a meta-analysis of the expression profiles of 10 filopodia-linked genes in human breast cancer. These data implicated that several different filopodia-inducing genes may contribute in a collective manner to cancer progression and the high metastasis rates associated with basal-type breast carcinomas.Key words: filopodia, integrins, migration, cancer  相似文献   

11.
Slender bundled actin containing plasma membrane protrusions, called filopodia, are important for many essential cellular processes like cell adhesion, migration, angiogenesis and the formation of cell-cell contacts. In migrating cells, filopodia are the pioneers at the leading edge which probe the environment for cues. Integrins are cell surface adhesion receptors critically implicated in cell migration and they are transported actively to filopodia tips by an unconventional myosin, myosin-X. Integrin mediated adhesion stabilizes filopodia and promotes cell migration even though integrins are not essential for filopodia initiation. Myosin-X binds also PIP3 and this regulates its activation and localization to filopodia. Filopodia stimulate cell migration in many cell types and increased filopodia density has been described in cancer. Furthermore, several proteins implicated in filopodia formation, like fascin, are also relevant for cancer progression. To investigate this further, we performed a meta-analysis of the expression profiles of 10 filopodia-linked genes in human breast cancer. These data implicated that several different filopodia inducing genes may contribute in a collective manner to cancer progression and the high metastasis rates associated with basal-type breast carcinomas.  相似文献   

12.
13.
Expression of the LIM proteins paxillin and Hic-5 in human tissues.   总被引:3,自引:0,他引:3  
The LIM domain is a protein-protein interaction motif critically involved in a variety of fundamental biological processes, including cytoskeletal organization, cell lineage specification, and organ development. In this study we examined the expression of the LIM proteins paxillin and Hic-5 in adult human tissues by immunohistochemistry and immunoblotting. Paxillin expression was widespread and observed both in non-muscle and muscle tissues. Of the latter, paxillin was mainly expressed in multinuclear striated muscle. In contrast, Hic-5 showed restricted expression and was expressed in muscle tissues, mainly in mononuclear smooth muscle. Taken together with previous findings, it appears likely that the counterbalance between paxillin and Hic-5 may be deeply involved in muscle differentiation.  相似文献   

14.
We investigated the roles of microfilaments and microtubules in the localization and tyrosine phosphorylation of paxillin, a focal adhesion-associated signaling molecule, in bovine aortic endothelial cells (BAECs). Paxillin tyrosine phosphorylation is inhibited by cytochalasin D (CD), but slightly increased by colchicine and paclitaxol (taxol). CD also caused an overall disassembly of paxillin-containing focal adhesions (paxillin-FAs) and translocation of paxillin to the cytoplasm and perinuclear region with a diffuse distribution. Meanwhile, colchicine and taxol caused a disassembly of paxillin-FAs from cell periphery and lamellipodia, and their assembly in cell center. These results indicate that actin filaments are important in paxillin assembly in the FAs of the whole ECs and that microtubules are critical in paxillin assembly in cell periphery and lamellipodia; thus the microfilaments and microtubules play differential roles in the dynamics of paxillin assembly/disassembly. Our findings also suggest that tyrosine phosphorylation is an important element in paxillin dynamics at FAs.  相似文献   

15.
Mucin-type O-glycans containing Core2 branches have distinctly different functions from those O-glycans that contain Core1 structures. Core2 branched O-glycans can have terminal structures that function as ligands for carbohydrate binding proteins. However, sialylated Core2 branched O-glycans without additional modifications exhibit anti-adhesive properties. These results demonstrate that certain mucin-type O-glycans can either facilitate or attenuate cell adhesion depending on the core structures and the structures of the non-reducing termini.  相似文献   

16.
The dynamic turnover of integrin-mediated adhesions is important for cell migration. Paxillin is an adaptor protein that localizes to focal adhesions and has been implicated in cell motility. We previously reported that calpain-mediated proteolysis of talin1 and focal adhesion kinase mediates adhesion disassembly in motile cells. To determine whether calpain-mediated paxillin proteolysis regulates focal adhesion dynamics and cell motility, we mapped the preferred calpain proteolytic site in paxillin. The cleavage site is between the paxillin LD1 and LD2 motifs and generates a C-terminal fragment that is similar in size to the alternative product paxillin delta. The calpain-generated proteolytic fragment, like paxillin delta, functions as a paxillin antagonist and impairs focal adhesion disassembly and migration. We generated mutant paxillin with a point mutation (S95G) that renders it partially resistant to calpain proteolysis. Paxillin-deficient cells that express paxillin S95G display increased turnover of zyxin-containing adhesions using time-lapse microscopy and also show increased migration. Moreover, cancer-associated somatic mutations in paxillin are common in the N-terminal region between the LD1 and LD2 motifs and confer partial calpain resistance. Taken together, these findings suggest a novel role for calpain-mediated proteolysis of paxillin as a negative regulator of focal adhesion dynamics and migration that may function to limit cancer cell invasion.  相似文献   

17.
Eph receptor tyrosine kinases (Ephs) and their membrane anchored ephrin ligands (ephrins) form an essential cell-cell communication system that directs the positioning, adhesion and migration of cells and cell layers during development. While less prominent in normal adult tissues, there is evidence that up-regulated expression and de-regulated function of Ephs and ephrins in a large variety of human cancers may promote a more aggressive and metastatic tumour phenotype. However, in contrast to other RTKs, Ephs do not act as classical proto-oncogenes and do not effect cell proliferation or differentiation. Mounting evidence suggests that Eph receptors, through de-regulated re-emergence of their mode of action in the embryo may direct cell movements and positioning during metastasis, invasion and tumour angiogenesis. This review discusses these and other emerging roles of Eph receptors during oncogenesis.  相似文献   

18.
Synemin is a unique cytoplasmic intermediate filament protein for which there is limited understanding of its exact cellular functions. The single human synemin gene encodes at least two splice variants named α-synemin and β-synemin, with the larger α-synemin containing an additional 312 amino acid insert within the C-terminal tail domain. We report herein that, by using the entire tail domain of the smaller β-synemin as the bait in a yeast two-hybrid screen of a human skeletal muscle cDNA library, the LIM domain protein zyxin was identified as an interaction partner for human synemin. The synemin binding site in human zyxin was subsequently mapped to the C-terminal three tandem LIM-domain repeats, whereas the binding site for zyxin within β-synemin is within the C-terminal 332 amino acid region (SNβTII) at the end of the long tail domain. Transient expression of SNβTII within mammalian cells markedly reduced zyxin protein level, blocked localization of zyxin at focal adhesion sites and resulted in decreased cell adhesion and increased motility. Knockdown of synemin expression with siRNAs within mammalian cells resulted in significantly compromised cell adhesion and cell motility. Our results suggest that synemin participates in focal adhesion dynamics and is essential for cell adhesion and migration.  相似文献   

19.
The small GTPases of the Rho family are intimately involved in integrin-mediated changes in the actin cytoskeleton that accompany cell spreading and motility. The exact means by which the Rho family members elicit these changes is unclear. Here, we demonstrate that the interaction of paxillin via its LD4 motif with the putative ARF-GAP paxillin kinase linker (PKL) (Turner et al., 1999), is critically involved in the regulation of Rac-dependent changes in the actin cytoskeleton that accompany cell spreading and motility. Overexpression of a paxillin LD4 deletion mutant (paxillinDeltaLD4) in CHO.K1 fibroblasts caused the generation of multiple broad lamellipodia. These morphological changes were accompanied by an increase in cell protrusiveness and random motility, which correlated with prolonged activation of Rac. In contrast, directional motility was inhibited. These alterations in morphology and motility were dependent on a paxillin-PKL interaction. In cells overexpressing paxillinDeltaLD4 mutants, PKL localization to focal contacts was disrupted, whereas that of focal adhesion kinase (FAK) and vinculin was not. In addition, FAK activity during spreading was not compromised by deletion of the paxillin LD4 motif. Furthermore, overexpression of PKL mutants lacking the paxillin-binding site (PKLDeltaPBS2) induced phenotypic changes reminiscent of paxillinDeltaLD4 mutant cells. These data suggest that the paxillin association with PKL is essential for normal integrin-mediated cell spreading, and locomotion and that this interaction is necessary for the regulation of Rac activity during these events.  相似文献   

20.
T-cadherin (T-cad), an unusual glycosylphosphatidylinositol (GPI)-anchored member of the cadherin family of cell adhesion molecules, is widely expressed in the cardiovascular system. The expression profile of T-cad within diseased (atherosclerotic and restenotic) vessels indicates some relationship between expression of T-cad and the phenotypic status of resident cells. Using cultures of human aortic smooth muscle cells (SMC) and human umbilical vein endothelial cells (HUVEC) we investigate the hypothesis that T-cad may function in modulating adhesive properties of vascular cells. Coating of culture plates with recombinant T-cad protein or with antibody against the first amino-terminal domain of T-cad (anti-EC1) significantly decreased adhesion and spreading of SMC and HUVEC. HUVECs adherent on T-cad or anti-EC1 substratum exhibited an elongated morphology and associated redistribution of the cytoskeleton and focal adhesions to a distinctly peripheral location. These changes are characteristic of the less-adhesive, motile or pro-migratory, pro-angiogenic phenotype. Boyden chamber migration assay demonstrated that the deadhesion induced by T-cad facilitates cell migration towards a serum gradient. Overexpression of T-cad in vascular cells using adenoviral vectors does not influence cell adhesion or motility per se, but increases the detachment and migratory responses induced by T-cad substratum. The data suggest that T-cad acts as an anti-adhesive signal for vascular cells, thus modulating vascular cell phenotype and migration properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号