首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu D  Liu Y  Fan B  Klessig DF  Chen Z 《Plant physiology》1997,115(2):343-349
Potato (Solanum tuberosum) plants contain a high basal level of salicylic acid (SA), the role of which in disease resistance is currently unclear. Here we report that, in spite of a drastic reduction in total SA levels in transgenic potato plants expressing the bacterial salicylate hydroxylase gene (nahG), there was no significant increase in disease severity when infected by Phytophthora infestans. Therefore, the high basal level of SA does not lead to constitutive resistance in healthy potato plants. However, in contrast to control plants, arachidonic acid failed to induce systematic acquired resistance (SAR) in nahG plants against P. infestans, indicating an essential role of SA in potato SAR. These results suggest that in potato the development of SAR against P. infestans may involve increased sensitivity of the plant to SA.  相似文献   

2.
3.
The NIM1 (for noninducible immunity, also known as NPR1) gene is required for the biological and chemical activation of systemic acquired resistance (SAR) in Arabidopsis. Overexpression of NIM1 in wild-type plants (hereafter referred to as NIM1 plants or lines) results in varying degrees of resistance to different pathogens. Experiments were performed to address the basis of the enhanced disease resistance responses seen in the NIM1 plants. The increased resistance observed in the NIM1 lines correlated with increased NIM1 protein levels and rapid induction of PR1 gene expression, a marker for SAR induction in Arabidopsis, following pathogen inoculation. Levels of salicylic acid (SA), an endogenous signaling molecule required for SAR induction, were not significantly increased compared with wild-type plants. SA was required for the enhanced resistance in NIM1 plants, however, suggesting that the effect of NIM1 overexpression is that plants are more responsive to SA or a SA-dependent signal. This hypothesis is supported by the heightened responsiveness that NIM1 lines exhibited to the SAR-inducing compound benzo(1,2,3)-thiadiazole-7-car-bothioic acid S-methyl ester. Furthermore, the increased efficacy of three fungicides was observed in the NIM1 plants, suggesting that a combination of transgenic and chemical approaches may lead to effective and durable disease-control strategies.  相似文献   

4.
After a hypersensitive response to invading pathogens, plants show elevated accumulation of salicylic acid (SA), induced expression of plant defense genes, and systemic acquired resistance (SAR) to further infection by a broad range of pathogens. There is compelling evidence that SA plays a crucial role in triggering SAR. We have transformed tobacco with two bacterial genes coding for enzymes that convert chorismate into SA by a two-step process. When the two enzymes were targeted to the chloroplasts, the transgenic (CSA, constitutive SA biosynthesis) plants showed a 500- to 1,000-fold increased accumulation of SA and SA glucoside compared to control plants. Defense genes, particularly those encoding acidic pathogenesis-related (PR) proteins, were constitutively expressed in CSA plants. This expression did not affect the plant phenotype, but the CSA plants showed a resistance to viral and fungal infection resembling SAR in nontransgenic plants.  相似文献   

5.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is effective against a broad range of pathogens. SAR in dicotyledonous plants such as tobacco and Arabidopsis has been partially elucidated and is mediated by salicylic acid (SA). However, the SAR mechanism of monocotyledonous rice plants remains to be clarified, although some similarities between SAR mechanisms in both types have been reported. Here we have characterized N-cyanomethyl-2-chloroisonicotinamide (NCI) as an effective SAR inducer in both plant species. Soil drench application of NCI induces a broad range of disease resistance in tobacco and rice and, more specifically, PR gene expression in tobacco. Both SA measurements in wild-type NCI-treated tobacco and pathogenic infection studies using NahG transgenic tobacco plants indicate that NCI-induced resistance enhancement does not require SA. Therefore, it is suggested that NCI induces SAR by triggering signaling at the same level as or downstream of SA accumulation as do both benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester and 2,6-dichloroisonicotinic acid. The fact that all of these chemicals are effective in rice and tobacco suggests that several common components function in disease resistance in both plant species.  相似文献   

6.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through asalicylic acid (SA)-mediated pathway. Here, we characterized 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in tobacco. Soil drench application of CMPA induced PR gene expression and a broad range of disease resistance without antibacterial activity in tobacco. Both analysis of CMPA's effects on NahG transgenic tobacco plants and SA measurement in wild-type plants indicated that CMPA-induced resistance enhancement does not require SA. Therefore, it is suggested that CMPA induces SAR by triggering the signaling at the same level as or downstream of SA accumulation as do both benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester and N-cyanomethyl-2-chloroisonicotinamide.  相似文献   

7.
To clarify the role of ethylene in systemic acquired resistance (SAR), we conducted experiments using Arabidopsis ethylene response mutants. Plants that are nonresponsive to ethylene (i.e., [theta]tr1 and [theta]in2) showed normal sensitivity to the SAR-inducing chemicals salicylic acid (SA) and 2,6-dichloroisonicotinic acid with respect to SAR gene induction and pathogen resistance. This indicated that chemically induced SAR is not an ethylene-dependent process in Arabidopsis. Ethephon, an ethylene-releasing chemical, induced SAR gene expression in both the wild type and ethylene mutants, whereas ethylene alone did not, suggesting that induction of these genes by ethephon is not due to the action of ethylene. Furthermore, transgenic plants expressing salicylate hydroxylase, a bacterial enzyme that degrades SA to catechol, did not accumulate SAR mRNAs in response to ethephon. Thus, SAR gene induction by ethephon appears to be mediated through SA. Other experiments suggested that ethylene may play a role in SAR by enhancing tissue sensitivity to the action of SA.  相似文献   

8.
Zhang W  Yang X  Qiu D  Guo L  Zeng H  Mao J  Gao Q 《Molecular biology reports》2011,38(4):2549-2556
Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.  相似文献   

9.
Transgenic tobacco plants that express the bacterial nahG gene encoding salicylate hydroxylase have been shown to accumulate very little salicylic acid and to be defective in their ability to induce systemic acquired resistance (SAR). In recent experiments using transgenic NahG tobacco and Arabidopsis plants, we have also demonstrated that salicylic acid plays a central role in both disease susceptibility and genetic resistance. In this paper, we further characterize tobacco plants that express the salicylate hydroxylase enzyme. We show that tobacco mosaic virus (TMV) inoculation of NahG tobacco leaves induces the accumulation of the nahG mRNA in the pathogen infected leaves, presumably due to enhanced stabilization of the bacterial mRNA. SAR-associated genes are expressed in the TMV-infected leaves, but this is localized to the area surrounding necrotic lesions. Localized acquired resistance (LAR) is not induced in the TMV-inoculated NahG plants suggesting that LAR, like SAR, is dependent on SA accumulation. When SA is applied to nahG-expressing leave's SAR gene expression does not result. We have confirmed earlier reports that the salicylate hydroxylase enzyme has a narrow substrate specificity and we find that catechol, the breakdown product of salicylic acid, neither induces acquired resistance nor prevents the SA-dependent induction of the SAR genes.  相似文献   

10.
In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR.  相似文献   

11.
A benzothiadiazole derivative induces systemic acquired resistance in tobacco   总被引:23,自引:2,他引:21  
Systemic acquired resistance (SAR) is a pathogen-induced disease resistance response in plants that is characterized by broad spectrum disease control and an associated coordinate expression of a set of SAR genes. Benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) is a novel synthetic chemical capable of inducing disease resistance in a number of dicotyledenous and monocotyledenous plant species. In this report, the response of tobacco plants to BTH treatment is characterized and the fact that it controls disease by activating SAR is demonstrated. BTH does not cause an accumulation of salicylic acid (SA), an intermediate in the SAR signal transduction pathway. As BTH also induces disease resistance and gene expression in transgenic plants expressing the nahG gene, it appears to activate the SAR signal transduction pathway at the site of or downstream of SA accumulation. BTH, SA and TMV induce the PR-1a promoter using similar cis-acting elements and gene expression is blocked by cycloheximide treatment. Thus, BTH induces SAR based on all of the physiological and biochemical criteria that define SAR in tobacco.  相似文献   

12.
Harpin, the product of the hrpN gene of Erwinia amylovora, elicits the hypersensitive response and disease resistance in many plants. Harpin and known inducers of systemic acquired resistance (SAR) were tested on five genotypes of Arabidopsis thaliana to assess the role of SAR in harpin-induced resistance. In wild-type plants, harpin elicited systemic resistance to Peronospora parasitica and Pseudomonas syringae pv. tomato, accompanied by induction of the SAR genes PR-1 and PR-2. However, in experiments with transgenic Arabidopsis plants containing the nahG gene which prevents accumulation of salicylic acid (SA), harpin neither elicited resistance nor activated SAR gene expression. Harpin also failed to activate SAR when applied to nim1 (non-inducible immunity) mutants, which are defective in responding to SA and regulation of SAR. In contrast, mutants compromised in responsiveness to methyl jasmonate and ethylene developed the same resistance as did wild-type plants. Thus, harpin elicits disease resistance through the NIM1-mediated SAR signal transduction pathway in an SA-dependent fashion. The site of action of harpin in the SAR regulatory pathway is upstream of SA.  相似文献   

13.
14.
Systemic acquired resistance (SAR) is an inducible defence mechanism which plays a central role in protecting plants from microbial pathogen attack. Guided by bioassays, a new chemical inducer of SAR was isolated from the extracts of Strobilanthes cusia and identified to be 3-acetonyl-3-hydroxyoxindole (AHO), a derivative of isatin. Tobacco plants treated with AHO exhibited enhanced resistance to tobacco mosaic virus (TMV) and to the fungal pathogen Erysiphe cichoracearum (powdery mildew), accompanied by increased levels of pathogenesis-related gene 1 ( PR-1 ) expression, salicylic acid (SA) accumulation and phenylalanine ammonia-lyase activity. To study the mode of action of AHO, its ability to induce PR-1 expression and TMV resistance in nahG transgenic plants expressing salicylate hydroxylase, which prevents the accumulation of SA, was analysed. AHO treatment did not induce TMV resistance or PR-1 expression in nahG transgenic plants, suggesting that AHO acts upstream of SA in the SAR signalling pathway. In addition, using two-dimensional gel electrophoresis combined with mass spectrometry, five AHO-induced plant proteins were identified which were homologous to the effector proteins with which SA interacts. Our data suggest that AHO may represent a novel class of inducer that stimulates SA-mediated defence responses.  相似文献   

15.
Systemic acquired resistance (SAR), a natural disease response in plants, can be induced chemically. Salicylic acid (SA) acts as a key endogenous signaling molecule that mediates SAR in dicotyledonous plants. However, the role of SA in monocotyledonous plants has yet to be elucidated. In this study, the mode of action of the agrochemical protectant chemical probenazole was assessed by microarray-based determination of gene expression. Cloning and characterization of the most highly activated probenazole-responsive gene revealed that it encodes UDP-glucose:SA glucosyltransferase (OsSGT1) , which catalyzes the conversion of free SA into SA O- β-glucoside (SAG). We found that SAG accumulated in rice leaf tissue following treatment with probenazole or 2,6-dichloroisonicotinic acid. A putative OsSGT1 gene from the rice cultivar Akitakomachi was cloned and the gene product expressed in Escherichia coli was characterized, and the results suggested that probenazole-responsive OsSGT1 is involved in the production of SAG. Furthermore, RNAi-mediated silencing of the OsSGT1 gene significantly reduced the probenazole-dependent development of resistance against blast disease, further supporting the suggestion that OsSGT1 is a key mediator of development of chemically induced disease resistance. The OsSGT1 gene may contribute to the SA signaling mechanism by inducing up-regulation of SAG in rice plants.  相似文献   

16.
Infection of plants by necrotizing pathogens can induce broad-spectrum resistance to subsequent pathogen infection. This systemic acquired resistance (SAR) is thought to be triggered by a vascular-mobile signal that moves throughout the plant from the infected leaves. A considerable amount of evidence suggests that salicylic acid (SA) is involved in the induction of SAR. Because SA is found in phloem exudate of infected cucumber and tobacco plants, it has been proposed as a candidate for the translocated signal. To determine if SA is the mobile signal, grafting experiments were performed using transgenic plants that express a bacterial SA-degrading enzyme. We show that transgenic tobacco root-stocks, although unable to accumulate SA, were fully capable of delivering a signal that renders nontransgenic scions resistant to further pathogen infection. This result indicated that the translocating, SAR-inducing signal is not SA. Reciprocal grafts demonstrated that the signal requires the presence of SA in tissues distant from the infection site to induce systemic resistance.  相似文献   

17.
Systemic acquired resistance in sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
Systemic acquired resistance (SAR) to infection by Botrytis cinerea in the leaves of sunflower (Helianthus annuus L.) plants was induced following cotyledon inoculation with B. cinerea or treatment with abiotic inducers. Salicylic acid (SA), benzo-(1,2,3)-thiadiazole-7-carbothioic S-methyl ester (BTH), 2,6-dichloroisonicotinic acid (INA) or EDTA protected sunflower plants against Botrytis infection, that was revealed by a reduction in the number and area of the necrotic lesions in upper leaves after challenge inoculation with the pathogen. SA and BTH were more potent inducers than INA, EDTA or pre-inoculation with the fungus. In addition to resistance to B. cinerea, the upper leaves have also developed resistance to maceration by a mixture of cell wall-degrading enzymes. Calcium nitrate inhibited both the protective effect and the resistance of leaf discs to cell-wall degrading enzymes. All the tested chemicals increased the synthesis and excretion of sunflower phytoalexins--coumarins scopoletin and ayapin and induced the PR-proteins chitinase and 1,3-beta-glucanase, being the inducer effect of each activator correlated with the level of protection against B. cinerea (BTH > SA > INA > EDTA). Thus, SAR induction is mediated by general increase of plant defence responses. This is the first report on SAR in sunflower.  相似文献   

18.
Mishina TE  Zeier J 《Plant physiology》2006,141(4):1666-1675
Upon localized attack by necrotizing pathogens, plants gradually develop increased resistance against subsequent infections at the whole-plant level, a phenomenon known as systemic acquired resistance (SAR). To identify genes involved in the establishment of SAR, we pursued a strategy that combined gene expression information from microarray data with pathological characterization of selected Arabidopsis (Arabidopsis thaliana) T-DNA insertion lines. A gene that is up-regulated in Arabidopsis leaves inoculated with avirulent or virulent strains of the bacterial pathogen Pseudomonas syringae pv maculicola (Psm) showed homology to flavin-dependent monooxygenases (FMO) and was designated as FMO1. An Arabidopsis knockout line of FMO1 proved to be fully impaired in the establishment of SAR triggered by avirulent (Psm avrRpm1) or virulent (Psm) bacteria. Loss of SAR in the fmo1 mutants was accompanied by the inability to initiate systemic accumulation of salicylic acid (SA) and systemic expression of diverse defense-related genes. In contrast, responses at the site of pathogen attack, including increases in the levels of the defense signals SA and jasmonic acid, camalexin accumulation, and expression of various defense genes, were induced in a similar manner in both fmo1 mutant and wild-type plants. Consistently, the fmo1 mutation did not significantly affect local disease resistance toward virulent or avirulent bacteria in naive plants. Induction of FMO1 expression at the site of pathogen inoculation is independent of SA signaling, but attenuated in the Arabidopsis eds1 and pad4 defense mutants. Importantly, FMO1 expression is also systemically induced upon localized P. syringae infection. This systemic up-regulation is missing in the SAR-defective SA pathway mutants sid2 and npr1, as well as in the defense mutant ndr1, indicating a close correlation between systemic FMO1 expression and SAR establishment. Our findings suggest that the presence of the FMO1 gene product in systemic tissue is critical for the development of SAR, possibly by synthesis of a metabolite required for the transduction or amplification of a signal during the early phases of SAR establishment in systemic leaves.  相似文献   

19.
Yu D  Xie Z  Chen C  Fan B  Chen Z 《Plant molecular biology》1999,39(3):477-488
We have previously shown that healthy potato plants respond poorly to salicylic acid (SA) for activating disease resistance against the late blight fungal pathogen Phytophthora infestans. However, SA is essential for the establishment of potato systemic acquired resistance (SAR) against P. infestans after treatment with the fungal elicitor arachidonic acid (AA). To understand the molecular mechanisms through which AA induces SA-dependent SAR in potato, we have recently studied the expression of potato class II catalase (Cat2St) in comparison with its tobacco homologue, Cat2Nt, which has previously been shown to bind SA. In the present study, we show that tobacco Cat2Nt is expressed at high levels and accounts for almost half of total SA-binding activity detected in tobacco leaves. In contrast, potato Cat2St is not expressed in healthy leaves, which is associated with the low SA responsiveness of potato plants for activation of disease resistance mechanisms. Upon treatment with AA, expression of potato Cat2St is induced not only in AA-treated leaves, but also in the upper untreated parts of the plants, concomitant with the establishment of SA -dependent SAR to P. infestans. Moreover, expression of the tobacco Cat2Nt gene in transgenic potato plants leads to constitutive expression of the endogenous potato Cat2St gene and is associated with enhanced resistance to P. infestans. These results collectively indicate that plant SA-binding class II catalases may play an important role in the development of disease resistance, possibly by serving as biological targets of SA.  相似文献   

20.
We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole-genome microarrays, we characterized the direct effects of SA on bacterial gene expression and showed that SA inhibits induction of virulence (vir) genes and the repABC operon, and differentially regulates the expression of many other sets of genes. Using virus-induced gene silencing, we further demonstrate that plant genes involved in SA biosynthesis and signaling are important determinants for Agrobacterium infectivity on plants. Silencing of ICS (isochorismate synthase), NPR1 (nonexpresser of pathogenesis-related gene 1), and SABP2 (SA-binding protein 2) in N. benthamiana enhanced Agrobacterium infection. Moreover, plants treated with benzo-(1,2,3)-thiadiazole-7-carbothioic acid, a potent inducer of SAR, showed reduced disease symptoms. Our data suggest that SA and SAR both play a major role in retarding Agrobacterium infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号