首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Aspects of morphogenesis and morphology of diatom cell walls are reviewed to highlight functional correlations between wall structures and three-dimensional cytoplasmic activities during the cell cycle. Morphogenesis of the siliceous valve within the silica deposition vesicle is discussed in the light of the dependency on a precisely orchestrated moulding machinery, involving the cytoskeleton, mitochondria, endoplasmic reticulum, spacer vesicles produced by the Golgi apparatus, and the plasmalemma, in combination with adhesion of the cells to parts of the parental wall and localized plasmolyses. Sensitivity of morphogenetic events to fluctuations of external factors has implications for taxonomy.Abbreviations CF cleavage furrows - cPL cleavage plasmalemma - GB girdle bands - LP labiate process - LPA labiate process apparatus - MC microtubule center - mLP macro labiate process - MT microtubule - MTOC microtubules organizing center - PL plasmalemma - SDV silica deposition vesicle - SL SDV membrane - SpV spacer vesicles Dedicated to Professor Peter Sitte on the occasion of his 65th birthday  相似文献   

2.
Summary Cells of the centric diatomDitylum brightwellii were filmed undergoing cell division and valve secretion, and were fixed for transmission electron microscopy. Attention was directed particularly at the origin of the Labiate Process Apparatus (LPA).As reported previously (li andVolcani 1985 a), the nucleus, centrally situated during interphase, moves laterally to undergo mitosis against the girdle bands. We describe the spindle which splits up into numerous fibres of overlapped polar microtubules (MTs) by metaphase. The chromosomes are diffuse and the spindle elongates rapidly during anaphase. A complex of organelles is found at the poles and ill-defined, dense material extends to the nearby plasmalemma from prophase on. The two Silica Deposition Vesicles (SDVs) are initiated during anaphase close to the poles and by midcleavage, the dense LPA arises on each SDV close to dense polar material. After cleavage, the daughter protoplasts round up and the SDV, already containing a nascent valve, expands over the cleavage furrow. The labiate process, a long straight hollow tube of silica, is rapidly (ca. 25 minutes) secreted from directly under the LPA; a fibrous plug (polysaccharide?) always appears in the SDV immediately adjacent to the LPA during the initiation of this secretion. The ill-defined Microtubule-Organizing Center (MC) from the spindle pole remains close to the LPA and in it can be seen the tiny presumptive primordial spindle on the nuclear envelope.The raphe and the labiate process (LP), both highly differentiated apertures in the valve, probably function in a specialized form of the mucilage secretion involved in generation of movement in raphid diatoms, and in a simple form of movement in some centrics. Morphogenesis of the LP is associated with the LPA while differentiation of the raphe is almost associated with the MC; both MC and LPA have an intimate ontological relationship with the spindle pole and the postmitotic cytoskeletal system of MTs. This association also is seen in the formation of the LP in an araphid pennate,Diatoma (work in progress). Therefore, from functional, morphogenetic and ontogenetic observations, we support the proposal that the raphe of pennate diatoms arose from the LP of centric diatoms.  相似文献   

3.
Summary InChaetoceros peruvianus, the two very long, delicately tapered setae (spine-like processes) of the lower valve curve downwards gently until they are often almost parallel, while those emerging from the upper valve curve sharply downwards until oriented almost in the same direction as the setae of the lower valve. This curvature creates a deep pit between the bases of the upper valve's setae, where they emerge from the valve. In live cells, extension of setae is rapid and very sensitive to disturbance. After cleavage the new silica deposition vesicle (SDV) appears in the centre of the furrow and expands outwards over it. A distinct microtubule centre (MC) appears directly on top of the SDV. Microtubules (MTs) from the MC ensheath the nucleus, and others fan out over the SDV and plasmalemma. A little later, the MC in the lower daughter cell moves off the SDV, and its MTs now appear to mould the plasmalemma/ SDV into the deep pit between the base of the setae. In the upper daughter cell, the MC remains on the SDV. Initiation of setae is first observed as protuberances of bare cytoplasm growing from the sides of the daughter cells, through gaps in the parental valve. Many MTs initially line the plasmalemma of these protuberances as they grow outwards and the SDV also expands over the new surface. As the setae get longer, a unique complex of three organelles appears. Just behind the naked cytoplasm at the tip of the seta, a thin flat layer of fibrous material lines the plasmalemma. This, the first of the complex, is called the thin band. Immediately behind this is the second, a much thicker, denser fibrous band, the thick band. At the front edge of the SDV, 5–6 finger-like outgrowths of silicified wall grow forwards. These are interconnected by the elements of the thick band which thus apparently dictate the polygonal profile of the seta. These also appear to generate the spinules (tiny spines) that adorn the surface of the seta; the spiral pattern of the spinules indicates that this whole complex might differentiate one after the next, in order. Further back from the tip, evenly spaced transverse ribs are formed. These are connected to the third organelle in the complex, the striated band; our interpretation is that the striated band sets up the spacing of the ridges that regularly line the inner surface of the setae. During seta growth, this complex is apparently responsible for controlling the delicate tapering curvature of the very fine silica processes. Since the complex is always seen near the tip of the seta, we conclude that it migrates forwards steadily as the tip grows. While the thin and thick bands could slide continuously over the cell membrane, the striated band must be disassembled and then recycled forward during extension if it is indeed connected to the ridges lining the inside of the setae. We could find no indication that turgor pressure drives extension of the setae, in which event the activity of these organelles is responsible for growth using the justformed silica tube as the base from which extension is generated.  相似文献   

4.
Each valve of the araphid pennate diatom Diatoma has a labiate process (LP) at one end; in a frustule, the LPs are at diagonally opposite ends. After mitosis is over, an elongated dense body detaches from the spindle pole and migrates to one end of the daughter cell, always diagonally opposite the LP of the parental valve. This dense body trails a cone-shaped array of microtubules (MTs). Meanwhile, the new valve has begun to form within the Silica Deposition Vesicle (SDV). Having reached the end of the cell, this dense body moves back slightly and then settles onto the SDV, developing a layered substructure as it does so. Immediately beneath it, the LP of the new daughter valve differentiates. This dense object is clearly the homologue of the fibrous Labiate Process Apparatus (LPA) involved in the differentiation of the LP in several centric diatoms. In a few cases, these LPAs also hair been shown to originate from some component of the spindle pole. Thus, the homologue of the LPA of centric diatoms has now been found in an araphid pennate diatom; in each case, the LPA apparently comes from the pole of the spindle and presumably uses a cytoskeleton of MTs to locate the LP in its correct position. These observations support the possibility that the raphe evolved from the LP.  相似文献   

5.
Valve morphogenesis in Proboscia alata Sundstrom was followed in living cells and during treatment with antiactin and antimicrotubule drugs. Once cleaved, sibling cells rounded up and retracted. Soon, a granular organizing center (OC) appeared adjacent to the stub of the initiated valve. Silicification started within a silicon deposition vesicle (SDV) adjacent to the OC. The elongating valve was initially tubular and sealed at one end, creating the proboscis of the conical valve. The edge of the SDV and thinnest region of the forming valve was lined by a sleeve of bundled microtubules (MTs) that terminated short of the older more rigid part of the valve. The growing proboscis of living cells treated with the anti‐MT drug oryzalin became grossly distorted. EM revealed dense material lining the growing edge of the SDV; immunofluorescence microscopy showed a ring of actin here. Applied to living cells, the antiactin drug cytochalasin D caused the very young proboscis to collapse; in older valves, the base of the proboscis expanded. Thus, valve morphogenesis appeared controlled by the MT cytoskeleton, keeping the proboscis straight while actin molded its conical outline. At the tip of the proboscis was a slit resembling a labiate process. Its morphogenesis involved striated fibers and two MTs, reminiscent of the fibers and MTs associated with raphe morphogenesis. In contrast to spine‐like processes that elongate by tip growth, the tip of the proboscis was formed first, and the consequent “antitip growth” suggests the tip was originally the center of the valve face.  相似文献   

6.
Micromorphogenesis within the silica deposition vesicle (SDV) of the diatom Pinnularia viridis (Nitzsh) Ehrenb. resulted in distinct silica nanostructures and layers within forming valves and girdle bands. These siliceous components were similarly disclosed following alkaline etching of mature valves/girdle bands, where their different susceptibilities to dissolution over time resulted from apparent differences in silica density and/or chemistry. The bulk of silica appeared to be deposited at the interface of the forming valve or girdle band with the silicalemma and occurred by the outward expansion of microfibrils of silica that aligned perpendicularly to the silicalemma. Microfibrils originated from both sides of the “silica lamella,” the first nanostructure formed within the SDV, and several silica species of distinct nanostructure and density resulted, including distinctive inner and outermost silica “coverings” of mature valves/girdle bands and the central and terminal nodules. Not all silica deposition and micromorphogenesis occurred in contact with the expanding silicalemma, but was somehow directed within the SDV cavity, and resulted in the distinct silica layers that lined the raphe fissures and poroids. Following alkaline etching, the inner surfaces of valves/girdle bands, as well as the silica layers lining the raphes, poroids, and slits, were determined to be significantly more resistant to alkaline etching than the exterior surfaces, while the outer silica coating and the nodules were quickly dissolved. The processes of micromorphogenesis must have exerted precise control over the chemical nature of the silica formed at different positions within the SDV and affected the overall structure and function of the diatom wall.  相似文献   

7.
Summary Mechanisms acting in pattern morphogenesis in the cell walls of two distant groups of plants, pollen of spermatophytes and diatoms, are compared in order to discriminate common principles from plant group- and wall material-specific features. The exinous wall in pollen is sequentially deposited on the exocellular side of the plasmalemma, while the siliceous wall in diatoms is formed intracellularly within an expanding silica deposition vesicle (SDV) which is attached to the internal face of the plasmalemma. Two levels of patterning occur in diatom and pollen walls: the overall pattern stabilises the wall mechanically and is apparently initiated in both groups by the parent cell, and a microtubule-dependent aperture and portula pattern created by the new mitotic (diatoms) or meiotic (pollen) cells. The parent wall in diatoms, and also the callosic wall in microspores, functions as anchor surfaces for transient, species-specific patterned adhesions of the plasmalemma to these walls, involved in pattern and shape creation. Patterned adhesion and exocytosis is blocked in pollen walls where the plasmalemma is shielded by the endoplasmic reticulum at the sites of the future apertures. In diatoms, wall patterning is uncoupled from the formation of a siliceous wall per se when the SDV and its wall is formed without contact to the the plasmalemma. Conversely, a blue-print pattern laid out in advance along the plasmalemma can be found in several diatoms. This highlights the key function of the plasmalemma and its associated membrane skeleton (fibrous lamina), and its orchestrated co-operation with elements of the radial filamentous cytoskeleton (actin?) in pattern formation. The role of microtubules during generation of the overall pattern may be primarily a transport and stabilizing function. Auxiliary organelles (spacer vesicles, endoplasmic reticulum, mitochondria) involved in diatoms for shaping the SDV, and a mechanism adhering and disconnecting this SDV together with spacer organelles in a species-specifically controlled sequence to and from the plasmalemma, are unnecessary for pollen wall patterning. The precise positioning of the portula pattern in diatom walls is discussed with respect to their role as permanent anchors of the cytoplasm to its wall, and in providing spatial information for nucelar migration and the next cell division, whereas apertures in pollen are for single use only.Abbreviations AF actin filaments - C/Ca callose - CF cleavage furrow - cPL cleavage plasmalemma - DV dense vesicles - ER endoplasmic reticulum - ET epitheca - HT hypotheca - mPL folded plasmalemma - MT microtubules - MTOC microtubule organising centre - PEV primexine (matrix) vesicles - PL plasmalemma - SDV silica deposition vesicle - Si silica - SL SDV-membrane - SPV spacer vesicles Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

8.
Like other diatoms, living cells of Chaetoceros decipiens Cleve expand lengthwise before they divide. During prophase, the nucleolus disappears in about 30 s. The spindle is very small but anaphase chromosome separation can be seen. Following rapid cleavage, the protoplasts contract, plasmolyzing slightly and transforming the cleavage furrow into a lens-shaped opening between daughter cells. During valve initiation, the surface of the furrow is molded slightly into the shape of the mature valve face. Then daughter cells expand further, becoming fully turgid as they open the slots in the girdle bands through which the setae will grow. Soon, delicate protrusions push through the girdle bands and develop into the setae, which are very sensitive: any disturbance will immediately stop their steady growth. Healthy setae display soft, mobile tips and tiny organelles (mitochondria) actively move along the lumen. Their curvature and uniform diameter is controlled during growth with exquisite precision, and in optimal conditions, they can become very long. At their initiation, cells appear fully turgid; however, many cells soon become slightly plasmolyzed during seta growth. This observation strongly suggests that turgor pressure cannot be responsible for driving extension; the possible mechanism is discussed in the following paper.  相似文献   

9.
The cysts (statospores) of Ochromonas tuberculata Hibberd are produced within a cytoplasmic silica deposition vesicle (SDV) whose membrane (silicalemma) appears to be formed by the coalescence of golgi vesicles. Silica is first deposited as small nodules and the collar and spines develop by centrifugal growth only after a complete but still thin wall has been laid down. Small vesicles appear to be attached to the SDV only in the region overlying the developing collar; a cap of radially arranged, moderately electron-dense material occurs at the tip of the growing spines. The cyst pore is formed at the anterior end of the flagellate cell, by lack of silica deposition over a small region of the SDV and rupture of the SDV and other membranes crossing this region. When the cyst wall is complete, an extracystic plug is formed in the pore, resulting in the loss of some extracystic cytoplasm and the plasmalemma, and the inner SDV membrane becomes the functional plasmalemma. The plug develops first by coalescence with the cell membrane of golgi-derived vesicles containing dense but apparently nonsiliceous spicules surrounded by amorphous material. During later stages of plug formation only fibrous material is deposited, some of which may be extruded through the pore forcing out some of the spiculate component. Scanning electron micrographs of the mature wall show it is smooth except for the concentrically wrinkled inner face of the flared collar and that the real pore diameter is only ca. half that of the collar. At germination the plug completely disappears in an unknown way and a single cell, similar to a normal vegetative cell emerges through the pore. Chrysophycean cyst formation generally resembles cell wall formation in diatoms, but differs in some details.  相似文献   

10.
Summary The sequential wall formation in the centric diatom,Ditylum brightwellii (West) Grunow, is described. The silica deposition vesicle is formed by the coalescence of small vesicles. Silicification of the new valve starts from the central labiate process area prior to the completion of cytokinesis, and the developing valve grows in a centrifugal direction. The initiation of the structures on the valve follows the sequence: labiate process, marginal ridge, and rota. A novel labiate process apparatus, which is situated in the cytoplasm close to the developing labiate process, appears prior to the initiation of the labiate process and disappears upon its maturation. Segments of the girdle bands are formed in individual silica deposition vesicles after the valve matures and is exocytosed. Three morphological forms of deposited silica have been determined: thin base layers, microfibrils, and hexagonal columns. The involvement of cytoplasmic structures in the patterning of the siliceous wall is discussed.  相似文献   

11.
Cellular growth in higher plants is generated (powered) by internal turgor pressure. Basic physics shows that the pressure required to deform a plastic tube by elongation is inversely proportional to the tube''s diameter. Accordingly, the turgor required to drive tip growth of very narrow cylindrical plant cells becomes very high, probably too high to be realized in living cells. The non-involvement of turgor in tip growth is demonstrated directly in living diatoms secreting fine tubular spines of silica. In some species, the membrane at the tip of the rigid tube is deformed inwards into its lumen during normal extension, whereas in other species, many cells are partly plasmolysed during normal, active spine (''seta'') extension. Evidence from other cells is consistent with the general conclusion that turgor is not significant in tip growth. We support the alternative hypothesis proposed by M. Harold and colleagues that extension in tip cells can be amoeboid, driven by cycling of the actin cytoskeleton. Actively growing setae display an internal, fibrous, collar-like sleeve, probably of actin at the tip; it is visualized as a molecular treadmill (''nanomachine'') that uses as its support-base the rigid tube that has just been secreted. This scenario can thereby explain how the perfectly even diameter of very long, fine setae is maintained throughout their extension, even when their tips are far distant from the cell body.  相似文献   

12.
Actinocyclus octonarius var. tenellus (Bréb.) Hendey, A. actinochilus (Ehr.) Simonsen and A. sagittulus sp. nov. were examined by light and scanning electron microscopy from field samples and/or culture material. Consistent cingulum patterns of a wide valvocopula and one narrow pleura were found. In A. actinochilus, a small third band was found filling the opening of the pleura and is probably present in the other two taxa. The observed variability of the pseudonodulus, especially in A. actinochilus but also in other members of the genus, was confirmed and our results support the literature definition of Actinocyclus as having: 1) a marginal ring of large labiate processes, laterally expanded internally, 2) no external tubes, 3) essentially radial areolation arranged in fascicles, 4) external cribrum, internal foramen, and 5) a pseudonodulus usually present, but may be absent or difficult to detect on individual valves. On the basis of the present study another characteristic should be added; 6) hyaline bands with a wide valvocopula and at least one pleura. This characteristic appears to extend throughout the family Hemidiscaceae, suggesting a close relationship to those Coscinodiscus species with a single marginal row of large labiate processes and zero or one central labiate processes. In addition, Actinocyclus has been noted to have a thin valve overhang extending outside the valvocopula for as much as one-third of its width.  相似文献   

13.
C. -W. Li  S. Chu  M. Lee 《Protoplasma》1989,151(2-3):158-163
Summary The present study on a centric diatom,Ditylum brightwellii, includes two parts: detection of sugars in the silica deposition vesicle (SDV) with lectins and labeling the developing siliceous cell wall in the SDV with rhodamine 123. Cells with developing valves are treated with SDS to remove all the cytoplasmic contents, then either stained with fluorescein labeled lectins or thin-sectioned and stained with colloidal gold labeled lectins. The results show that mannose is part of the organic matrix in the SDV. Rhodamine 123, a non-toxic fluorescent laser dye, enters the cell immediately and is trapped in the SDV probably by the high reducing potential of the SDV. Silica is co-deposited with rhodamine 123 in the SDV, and the resulting valves and girdle bands become fluorescent. Implications of this study for the mechanism of silicification are discussed.Abbreviation SDV Silica deposition vesicle  相似文献   

14.
Summary The development of the wall of synchronized culture ofN. pelliculosa is described. The first step, modification of the 3-2 configuration of the girdle bands of the wall during interphase, occurs immediately before mitotic division by the addition of a third girdl band to the hypotheca. Following cytokenesis, the new valve is initiated when a primary central band is formed within a silica deposition vesicle. This band extends the length of the cell and contains a central nodule. Secondary arms extend from the central nodule, join with extensions of the primary central band, and constitute the raphe rib. Mounds or knolls are formed on the central nodule and disappear as the valve matures. Transapical ribs appear on both the primary central band and secondary arms, and cross extensions join to form the sieve plate areas. The wall appears to be released by a joining of the inner silicalemma and the plasmalemma. An organic coat covers the newly released wall. Two girdle bands are formed and released sequentially.  相似文献   

15.
Sporophyte setae of Lophocolea heterophylla (a leafy liverwort) elongate solely as a result of the expansion of individual seta cells. Though seta walls thin considerably during elongation, colorimetric analysis indicates that 25-fold increase in seta cell length is accompanied by a 2-fold increase in cell wall carbohydrates. Carbohydrate reserves of setae were characterized histochemically and by paper chromatography. Starch diminishes during elongtion; polyfructosans and sucrose are replaced by fructose and glucose. Increase in wall material appears to be at the expense of these carbohydrate reserves in seta cells, and may be due as well to a transport of wall precursors from the gametophyte.  相似文献   

16.
Tesson B  Hildebrand M 《PloS one》2010,5(12):e14300
BACKGROUND: The diatom cell wall, called the frustule, is predominantly made out of silica, in many cases with highly ordered nano- and micro-scale features. Frustules are built intracellularly inside a special compartment, the silica deposition vesicle, or SDV. Molecules such as proteins (silaffins and silacidins) and long chain polyamines have been isolated from the silica and shown to be involved in the control of the silica polymerization. However, we are still unable to explain or reproduce in vitro the complexity of structures formed by diatoms. METHODS/PRINCIPAL FINDING: In this study, using fluorescence microscopy, scanning electron microscopy, and atomic force microscopy, we were able to compare and correlate microtubules and microfilaments with silica structure formed in diversely structured diatom species. The high degree of correlation between silica structure and actin indicates that actin is a major element in the control of the silica morphogenesis at the meso and microscale. Microtubules appear to be involved in the spatial positioning on the mesoscale and strengthening of the SDV. CONCLUSIONS/SIGNIFICANCE: These results reveal the importance of top down control over positioning of and within the SDV during diatom wall formation and open a new perspective for the study of the mechanism of frustule patterning as well as for the understanding of the control of membrane dynamics by the cytoskeleton.  相似文献   

17.
A Buczek  K Jasik  L Buczek 《Parassitologia》1998,40(3):279-282
Light and scanning electron microscopic studies showed the differences in morphology and in size of Haller's organ in larvae, nymphs and adults (females and males) of Hyalomma marginatum marginatum Koch, 1844. The length of the anterior pit setae increases during post-embryonic development. The localization of these setae is the same in all stages. Six setae (one porose seta, two grooved setae, two fine setae, one conical seta) contain anterior pit of various developmental stages. In nymphs and adults more numerous pores appear on the wall surface of porose seta than in the larval stage. The structure of the capsule roof also differs in various developmental stages. Haller's organ of Hyalomma m. marginatum shows great degree of morphological development which is connected with the complicated life cycle and feeding behaviour of this tick species.  相似文献   

18.
The morphogenesis of the setae in the statocyst sensilla of Neomysis integer was studied. Immediately before ecdysis, a new seta lies inverted between the enveloping cells. All of the nine enveloping cells, except the first one, secrete a well defined part of the new seta. The second, third, fourth, and fifth have a trichogen function; the sixth has a trichogen-tormogen function; and the seventh, eighth, and ninth enveloping cells have a tormogen function. It could not be established whether the dendritic sheath is replaced at molt. In the second and third enveloping cells, there is a differential secretion of cuticular material forming the wall of the distal part of the seta. As a consequence, this wall is not homogeneous. The possible role of this heterogeneity in the formation of the gutter-like apical part of the seta is discussed. A mechanism is proposed by which the pore develops at the transition between the midpart and the apical gutter-like part. Before ecdysis, the distal segments of the sensory cells are still connected with the wall of the old seta in the same way as during intermolt. No degeneration is apparent in the distal segments during preparation for the molt. These morphological findings suggest that sensitivity of the sensilla must be maintained until the moment of the ecdysis.  相似文献   

19.
Diatoms stand out among other microalgae due to the high diversity of species-specific silica frustules whose components (valves and girdle bands) are formed within the cell in special organelles called silica deposition vesicles (SDVs). Research on cell structure and morphogenesis of frustule elements in diatoms of different taxonomic groups has been carried out since the 1950s but is still relevant today. Here, cytological features and valve morphogenesis in the freshwater raphid pennate diatom Encyonema ventricosum (Agardh) Grunow have been studied using light and transmission electron microscopy of cleaned frustules and ultrathin sections of cells, and scanning electron and atomic force microscopy of the frustule surface. Data have been obtained on chloroplast structure: the pyrenoid is spherical, penetrated by a lamella (a stack of two thylakoids); the girdle lamella consists of several short lamellae. The basic stages of frustule morphogenesis characteristic of raphid pennate diatoms have been traced, with the presence of cytoskeletal elements near SDVs being observed throughout this process. Degradation of the plasmalemma and silicalemma is shown to take place when the newly formed valve is released into the space between sister cells. The role of vesicular transport and exocytosis in the gliding of pennate diatoms is discussed.  相似文献   

20.
Part of the cytoplasm, which always contains the plastid, of seta-bearing cells of Coleochaete scutata Bréb. rotates clockwise about the base of the seta. Many golgi bodies, vesicles and much endoplasmic reticulum occupy the bridges between the rotating central core of cytoplasm and the stationary peripheral layer of these cells. The setae, which grow from their base, are devoid of organelles other than vesicles and elongate mitochondria. At irregular intervals along the thin seta wall are annular thickenings containing callose. Microtubules which encircle the base of the seta disappear on treatment with colchicine. This drug had no effect on the speed of rotational streaming or the growth rate of existing hairs but did inhibit the development of new setae. Cytochalasin B slowed, but did not stop, streaming after 3 h exposure. However caffeine, but not EDTA, EGTA or the Ca ionophore A23187, reversibly inhibited cyclosis. The mechanism of cytoplasmic rotation is discussed in the light of these drug treatments and the presence of actin in the alga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号