首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Invasion of host cells by the malaria pathogen Plasmodium relies on parasite transmembrane adhesins that engage host-cell receptors. Adhesins must be released by cleavage before the parasite can enter the cell, but the processing enzymes have remained elusive. Recent work indicates that the Toxoplasma rhomboid intramembrane protease TgROM5 catalyzes this essential cleavage. However, Plasmodium does not encode a direct TgROM5 homolog. We examined processing of the 14 Plasmodium falciparum adhesins currently thought to be involved in invasion by both model and Plasmodium rhomboid proteases in a heterologous assay. While most adhesins contain aromatic transmembrane residues and could not be cleaved by nonparasite rhomboid proteins, including Drosophila Rhomboid-1, Plasmodium falciparum rhomboid protein (PfROM)4 (PFE0340c) was able to process these adhesins efficiently and displayed novel substrate specificity. Conversely, PfROM1 (PF11_0150) shared specificity with rhomboid proteases from other organisms and was the only PfROM able to cleave apical membrane antigen 1 (AMA1). PfROM 1 and/or 4 was thus able to cleave diverse adhesins including TRAP, CTRP, MTRAP, PFF0800c, EBA-175, BAEBL, JESEBL, MAEBL, AMA1, Rh1, Rh2a, Rh2b, and Rh4, but not PTRAMP, and cleavage relied on the adhesin transmembrane domains. Swapping transmembrane regions between BAEBL and AMA1 switched the relative preferences of PfROMs 1 and 4 for these two substrates. Our analysis indicates that PfROMs 1 and 4 function with different substrate specificities that together constitute the specificity of TgROM5 to cleave diverse adhesins. This is the first enzymatic analysis of Plasmodium rhomboid proteases and suggests an involvement of PfROMs in all invasive stages of the malaria lifecycle, in both the vertebrate host and the mosquito vector.  相似文献   

4.
Phenoloxidase in the hemolymph of Sarcophaga bullata larvae is present as an inactive proenzyme form. Localization studies indicate that the majority of the prophenoloxidase is present in the plasma fraction whereas only a minor fraction (about 4%) is present in the cellular compartments (hemocytes). Inactive prophenoloxidase can be activated by zymosan, not by either endotoxin or laminarin. This activation process is inhibited by the serine protease inhibitors, benzamidine and p-nitrophenyl-p~-guanidobenzoate. Exogenously added proteases, such as chymotrypsin and subtilisin, also activated the prophenoloxidase in the whole hemolymph but failed to activate the partially purified proenzyme. However, an activating enzyme isolated from the larval cuticle, which exhibits trypsinlike specificity, activated the partially purified prophenoloxidase. Inhibition studies and activity measurements also revealed the presence of a similar activating enzyme in the hemolymph. Thus, the phenoloxidase system in Sarcophaga bullata larval hemolymph seems to be comprised of a cascade of reactions. An endogenous protease inhibitor isolated from the larvae inhibited chymotrypsin-mediated prophenoloxidase activation but failed to inhibit the cuticular activating enzyme-catalyzed activation. Based on these studies, the roles of prophenoloxidase, endogenous activating proteases, and protease inhibitor in insect immunity are discussed.  相似文献   

5.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

6.
Serine proteases play crucial roles in erythrocyte invasion by merozoites of the malaria parasite. Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) is synthesized during maturation of the intraerythrocytic parasite and accumulates in a set of merozoite secretory organelles, suggesting that it may play a role in host cell invasion or post-invasion events. We describe the production, purification, and characterization of recombinant PfSUB-1 and comparison with the authentic protease detectable in parasite extracts. The recombinant protease requires high levels of calcium for optimum activity and has an alkaline pH optimum. Using a series of decapeptide and protein substrates, PfSUB-1 was found to have a relaxed substrate specificity with regard to the P1 position but is unable to efficiently cleave substrates with a P1 leucine residue. Similarly, replacement of a P4 valine with alanine severely reduced cleavage efficiency, whereas its replacement with lysine abolished cleavage. In all respects investigated, the recombinant protease was indistinguishable from parasite-derived enzyme. Three-dimensional homology modeling of the PfSUB-1 catalytic domain based on an alignment with closely related bacterial subtilisins and an orthologue from the rodent malaria Plasmodium yoelii suggests that the protease has at least three potential calcium ion-binding sites, three intramolecular disulfide bridges, and a single free cysteine within the enzyme S1 pocket. A predicted highly polar S1 pocket and a hydrophobic S4 subsite are in broad agreement with the experimentally determined substrate specificity.  相似文献   

7.
8.
Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop 'pan-reactive' drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1.  相似文献   

9.
Nitric oxide (NO) is known to possess antiparasitic activity towards Plasmodium species. Parasite proteases are currently considered to be promising targets for antimalarial chemotherapy. In the present study, we have studied the inhibitory effect of NO on the activity of plasmepsin in Plasmodium vivax, the pepsin-like aspartic protease which is believed to be involved in the cleavage during hemoglobin degradation in Plasmodium falciparum. NO donors (+/-) (E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), S-nitrosoglutathione (GSNO), and sodium nitroprusside (SNP) were found to inhibit this plasmepsin activity in a dose-dependent manner in purified P. vivax aspartic protease enzyme extracts. This inhibitory effect may be attributable to the nitrosylation of the cysteine residue at the catalytic site. However, an inhibitor of aspartic protease activity, namely pepstatin, was also found to inhibit (IC50 3 microM ) the enzyme activity, which we have used as a positive control. Our results therefore provide novel insights into the pathophysiological mechanisms, and will be useful for designing strategies for selectively upregulating NO production in P. vivax infections for antimalarial chemotherapy and also biochemical adaptations of the malaria parasite for survival in the host erythrocytes with a better understanding of the protease substrate interactions.  相似文献   

10.
A three-dimensional structure of histo-aspartic protease (HAP), a pepsin-like enzyme from the causative agent of malaria Plasmodium falciparum, is suggested on the basis of homologous modeling followed by equilibration by the method of molecular dynamics. The presence of a His residue in the catalytic site instead of an Asp residue, which is characteristic of pepsin-like enzymes, and replacement of some other conserved residues in the active site make it possible for the enzyme to function by the covalent mechanism inherent in serine proteases. The detailed structures of HAP complexes with pepstatin, a noncovalent inhibitor of aspartic proteases, and phenylmethylsulfonyl fluoride, a covalent inhibitor of serine proteases, as well as with a pentapeptide substrate are discussed.  相似文献   

11.
Invasion of erythrocytes is an integral part of the Babesia divergens life cycle. Serine proteases have been shown to play an important role in invasion by related Apicomplexan parasites such as the malaria parasite Plasmodium falciparum. Here we demonstrate the presence of two dominant serine proteases in asexual B. divergens using a biotinylated fluorophosphonate probe. One of these active serine proteases (p48) and its precursors were recognized by anti-PfSUB1 antibodies. These antibodies were used to clone the gene encoding a serine protease using a B. divergens cDNA library. BdSub-1 is a single copy gene with no introns. The deduced gene product (BdSUB-1) clearly belongs to the subtilisin superfamily and shows significant homology to Plasmodium subtilisins, with the highest degree of sequence identity around the four catalytic residues. Like subtilisin proteases in other Apicomplexan parasites, BdSUB-1 undergoes two steps of processing during activation in the secretory pathway being finally converted to an active form (p48). The mature protease is concentrated in merozoite dense granules, apical secretory organelles involved in erythrocyte invasion. Anti-PfSUB1 antibodies have a potent inhibitory effect on erythrocyte invasion by B. divergens merozoites in vitro. This report demonstrates conservation of the molecular machinery involved in erythrocyte invasion by these two Apicomplexan parasites and paves the way for a comparative analysis of other molecules that participate in this process in the two parasites.  相似文献   

12.
A three-dimensional structure of histo-aspartic protease (HAP), a pepsin-like enzyme from the causative agent of malaria Plasmodium falciparum, is suggested on the basis of homologous modeling followed by equilibration by the method of molecular dynamics. The presence of a His residue in the catalytic site instead of an Asp residue, which is characteristic of pepsin-like enzymes, and replacement of some other conserved residues in the active site make it possible for the enzyme to function by the covalent mechanism inherent in serine proteases. The detailed structures of HAP complexes with pepstatin, a noncovalent inhibitor of aspartic proteases, and phenylmethylsulfonyl fluoride, a covalent inhibitor of serine proteases, as well as with a pentapeptide substrate are discussed.  相似文献   

13.
14.
Mutagenesis of the NS3 Protease of Dengue Virus Type 2   总被引:4,自引:3,他引:1       下载免费PDF全文
The flavivirus protease is composed of two viral proteins, NS2B and NS3. The amino-terminal portion of NS3 contains sequence and structural motifs characteristic of bacterial and cellular trypsin-like proteases. We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases. In all, 46 single-amino-acid substitutions were created in a cloned NS2B-NS3 cDNA fragment of dengue virus type 2, and the effect of each mutation on the extent of self-cleavage of the NS2B-NS3 precursor at the NS2B-NS3 junction was assayed in vivo. Twelve mutations almost completely or completely inhibited protease activity, 9 significantly reduced it, 14 decreased cleavage, and 11 yielded wild-type levels of activity. Substitution of alanine at ultraconserved residues abolished NS3 protease activity. Cleavage was also inhibited by substituting some residues that are conserved among flavivirus NS3 proteins. Two (Y150 and G153) of the five putative substrate binding residues could not be replaced by alanine, and only Y150 and N152 could be replaced by a conservative change. The two other putative substrate binding residues, D129 and F130, were more freely substitutable. By analogy with the trypsin model, it was proposed that D129 is located at the bottom of the substrate binding pocket so as to directly interact with the basic amino acid at the substrate cleavage site. Interestingly, we found that significant cleavage activity was displayed by mutants in which D129 was replaced by E, S, or A and that low but detectable protease activity was exhibited by mutants in which D129 was replaced by K, R, or L. Contrary to the proposed model, these results indicate that D129 is not a major determinant of substrate binding and that its interaction with the substrate, if it occurs at all, is not essential. This mutagenesis study provided us with an array of mutations that alter the cleavage efficiency of the dengue virus protease. Mutations that decrease protease activity without abolishing it are candidates for introduction into the dengue virus infectious full-length cDNA clone with the aim of creating potentially attenuated virus stocks.  相似文献   

15.
Proinflammatory responses to malaria have crucial roles in controlling parasite growth and disease pathogenesis. The glycosylphosphatidylinositol (GPI) of Plasmodium falciparum is thought to be an important factor in the induction of proinflammatory responses. The GPI induces host cellular responses mainly through Toll-like receptor (TLR)2/MyD88-mediated signaling. Knowledge of the parasite-host factors involved in activating and regulating innate immune responses and of the associated signaling mechanisms is likely to provide insights into the modulation of parasite-specific adaptive immunity and offer targets for the development of novel therapeutics or a vaccine for malaria. This article focuses on the malaria GPI-mediated cell-signaling mechanisms.  相似文献   

16.
17.
Prophenoloxidase has been successfully obtained from the haemolymph of the cockroach Periplaneta americana using cane sugar saline solution. The proenzyme was activated by various exogenously added proteases such as chymotrypsin, trypsin, subtilisin and thermolysin. Thermolysin was found to be the greatest activator, followed by chymotrypsin and subtilisin. Chymotrypsin activation showed a lag period when compared with the other proteases tested, indicating that activation by chymotrypsin followed an indirect path, whereas, subtilisin and thermolysin activated the proenzyme directly.Exogenously added protease inhibitor showed inhibition towards protease-mediated prophenoloxidase activation. Benzamidine inhibited chymotrypsin and trypsin activation, whereas soybean trypsin inhibitor inhibited trypsin. In situ inhibitor isolated from the haemocytes of Periplaneta americana inhibited the prophenoloxidase activation and showed evidence for the presence of a built-in inhibition system for the release of the components of the prophenoloxidase activating system of P. americana. Electrophoretic localization of activated phenoloxidase showed two bands, suggesting the dimeric condition of high mol. wt prophenoloxidase.  相似文献   

18.
Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4). Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5), suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3) to moderate (KP4) preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease inhibitor libraries against knowpains for developing broadly effective compounds active against multiple human malaria parasites.  相似文献   

19.
The plasmepsin proteases from the malaria parasite Plasmodium falciparum are attracting attention as putative drug targets. A recently published crystal structure of Plasmodium malariae plasmepsin IV bound to an allophenylnorstatine inhibitor [Clemente, J.C. et al. (2006) Acta Crystallogr. D 62, 246-252] provides the first structural insights regarding interactions of this family of inhibitors with plasmepsins. The compounds in this class are potent inhibitors of HIV-1 protease, but also show nM binding affinities towards plasmepsin IV. Here, we utilize automated docking, molecular dynamics and binding free energy calculations with the linear interaction energy LIE method to investigate the binding of allophenylnorstatine inhibitors to plasmepsin IV from two different species. The calculations yield excellent agreement with experimental binding data and provide new information regarding protonation states of active site residues as well as conformational properties of the inhibitor complexes.  相似文献   

20.
This paper presents the cloning and biochemical characterisation of the cysteine protease Tr-cp 14 from white clover (Trifolium repens). The predicted amino acid sequence of Tr-cp 14 is 71%, 74% and 74% identical to the cysteine proteases XCP1 and XCP2 from Arabidopsis thaliana, and p48h-17 from Zinnia elegans, respectively. These cysteine proteases have previously been shown to be involved in programmed cell death during tracheary element differentiation. The precursor polypeptide of Tr-cp 14 was expressed in Escherichia coli, purified from inclusion bodies and refolded. The precursor polypeptide could be processed to its active mature form autocatalytically at pH 5.0 and had a requirement for 20 mM l-cysteine for optimal activity. Mature Tr-cp 14 showed a preference for synthetic aminomethylcoumarin substrates with either Leu or Phe in the P2 position when tested with Arg in P1. A substrate with Arg in both the P1 and P2 position was not accepted as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号