首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular remodeling is characterized by the aggregation of vascular smooth muscle cells (VSMCs) in intima. Previous studies have demonstrated that dehydroepiandrosterone (DHEA), a steroid hormone, can reverse vascular remodeling. However, it is still far clear that whether and how DHEA participates in the modulation of VSMCs activation and vascular remodeling. VSMCs were obtained from the thoracic aorta of SD rats. Cell proliferation was evaluated by CCK-8 assay and BrdU assay. To measure VSMCs migration activity, a transwell chamber assay was performed. Quantitative real-time RT-PCR and western blot were used to explore the molecular mechanisms. ROS generation by VSMCs was measured by DCF fluorescence. NADPH oxidase activity and SOD activity were measured by the corresponding kits. NF-κB activity was detected by NF-κB luciferase reporter gene assay. A rat carotid artery balloon injury model was built to evaluate the neointimal formation, and plasma PGF2 was measured by ELISA. Our results showed that DHEA significantly inhibited VSMCs proliferation after angiotensin (Ang II) stimulation by down-regulation of NADPH oxidase activity and ERK1/2 phosphorylation. Ang II can increase IL-6 and MCP-1 expression, but DHEA reverses these changes via inhibiting p38-MAPK/NF-κB (p65) signaling pathway. DHEA has no significant effects on VSMCs phenotype transition, but can reduce the neointimal to media area ratio after balloon injury. DHEA can alleviate oxidative stress and inflammation in VSMCs via ERK1/2 and NF-κB signaling pathway, but has no effect on VSMCs phenotype transition. Furthermore, DHEA attenuates VSMCs activation and neointimal formation after carotid injury in vivo. Taken together, DHEA might be a promising treatment for vascular injury under pathological condition.  相似文献   

2.
3.
Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs). Using small interfering RNA (siRNA), we evaluated the effect of MMP-2 inhibition in VSMCs in vitro and ex vivo. Rabbit VSMCs were transfected in vitro with 50 nmol/l MMP-2 siRNA or scramble siRNA. Flow cytometry and confocal microscopy showed cellular uptake of siRNA in approximately 80% of VSMCs. MMP-2 mRNA levels evaluated by real-time RT-PCR, pro-MMP-2 activity from conditioned culture media evaluated by gelatin zymography, and VSMC migration were reduced by 44 +/- 19%, 43 +/- 14%, and 36 +/- 14%, respectively, in MMP-2 siRNA-transfected compared with scramble siRNA-transfected VSMCs (P < 0.005 for all). Ex vivo MMP-2 siRNA transfection was performed 2 wk after balloon injury of hypercholesterolemic rabbit carotid arteries. Fluorescence microscopy showed circumferential siRNA uptake in neointimal cells. Gelatin zymography of carotid artery culture medium demonstrated a significant decrease of pro-MMP-2 activity in MMP-2 siRNA-transfected compared with scramble siRNA-transfected arteries (P < 0.01). Overall, our results demonstrate that in vitro MMP-2 siRNA transfection in VSMCs markedly inhibits MMP-2 gene expression and VSMC migration and that ex vivo delivery of MMP-2 siRNA in balloon-injured arteries reduces pro-MMP-2 activity in neointimal cells, suggesting that siRNA could be used to modify arterial biology in vivo.  相似文献   

4.
BACKGROUND: Balloon injury of the arterial wall induces increased vascular smooth cell proliferation, enhanced elastic recoil, and abnormalities in thrombosis, each of which contribute to regrowth of intima and the lesion of restenosis. Several gene transfer approaches have been used to inhibit such intimal smooth muscle cell growth. In this report, adenoviral gene transfer of beta-interferon (beta-IFN) was analyzed in a porcine model of balloon injury to determine whether a secreted growth inhibitory protein might affect the regrowth of vascular smooth muscle cells in vitro and in arteries. MATERIALS AND METHODS: An adenoviral vector encoding beta-interferon (ADV-beta-IFN) was prepared and used to infect porcine vascular smooth muscle cells in a porcine balloon injury model. Its antiproliferative effect was analyzed in vitro and in vivo. RESULTS: Expression of recombinant porcine beta-IFN in vascular smooth muscle cells reduced cell proliferation significantly in vitro, and supernatants derived from the beta-IFN vector inhibited vascular smooth muscle cell proliferation relative to controls. When introduced into porcine arteries after balloon injury, a reduction in cell proliferation was observed 7 days after gene transfer measured by BrdC incorporation (ADV-delta E1 arteries 14.5 +/- 1.2%, ADV-beta IFN 6.8 +/- 0.8%, p < 0.05, unpaired, two-tailed t-test). The intima-to-media area ratio was also reduced (nontransfected arteries, 0.70 +/- 0.05; ADV-delta E1 infected arteries, 0.69 +/- 0.06; ADV-beta-IFN infected arteries, 0.53 +/- 0.03; p < 0.05, ANOVA with Dunnett t-test). No evidence of organ toxicity was observed, and regrowth of the endothelial cell surface was observed 3-6 weeks after balloon injury. CONCLUSIONS: Gene transfer of an adenoviral vector encoding beta-IFN into balloon-injured arteries reduced vascular smooth muscle proliferation and intimal formation. Expression of this gene product may have potential application for the treatment of vascular proliferative diseases.  相似文献   

5.
The purpose of this study was to determine the efficacy and the possible mechanism of action of the synthesized drug isoeugenodilol (a new third-generation β-adrenoceptor blocker) on the growth factor-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a rat carotid arterial balloon injury model. Isoeugenodilol significantly inhibited 10% FBS, 20 ng/ml PDGF-BB, and 20 ng/ml vascular endothelial growth factor (VEGF)-induced proliferation. In accordance with these findings, isoeugenodilol revealed blocking of the FBS-inducible progression through the G0/G1 to the S phase of the cell cycle in synchronized cells. Neointimal formation, measured 14 days after injury, was reduced by the oral administration of isoeugenodilol (10 mg/kg/day). In an in vitro assay, isoeugenodilol inhibited the migration of VSMCs stimulated by PDGF-BB. These findings indicate that isoeugenodilol shows an inhibitory potency on neointimal formation due to inhibition of both migration and proliferation of VSMCs. In addition, isoeugenodilol in concentration-dependent manner decreased the levels of phosphorylated ERK1/2 in both VSMCs and balloon-injured carotid arteries. The levels of phosphorylated MEK1/2 and Pyk2 as well as intracellular Ca2+ and reactive oxygen species (ROS) were in concentration-dependent manner reduced by isoeugenodilol. Taken together, these results indicate that isoeugenodilol may suppress mitogen-stimulated proliferation and migration partially through inhibiting cellular ROS and calcium, and hence, through activation of the Pyk2-ERK1/2 signal pathway. This suggests that isoeugenodilol has potential for the prevention of atherosclerosis and restenosis.  相似文献   

6.
Aberrant growth of vascular smooth muscle cells (VSMCs) is a major cellular event in the pathogenesis of many proliferative vascular diseases. Recently, microRNA-31 (miR-31) has been found to play a critical role in cancer cell proliferation. However, the biological role of miR-31 in VSMC growth and the mechanisms involved are currently unknown. In the present study, the expression of rat mature miR-31 (rno-miR-31) was determined in cultured VSMCs and in rat carotid arteries. We identified that rno-miR-31 is an abundant miRNA in VSMCs, and its expression was significantly increased in proliferative VSMCs and in vascular walls with neointimal growth. The up-regulation of rno-miR-31 in proliferative VSMCs was inhibited by the inhibitor of mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK). By both gain-of-function and loss-of-function approaches, we demonstrated that rno-miR-31 had a proproliferative effect on VSMCs. We further identified that LATS2 (large tumor suppressor homolog 2) is a downstream target gene product of rno-miR-31 that is involved in rno-miR-31-mediated effect on VSMC proliferation. The LATS2 as a target gene protein of rno-miR-31 is verified in vivo in balloon-injured rat carotid arteries. The results suggest that MAPK/ERK/miR-31/LATS2 may represent a novel signaling pathway in VSMC growth. miR-31 is able to enhance VSMC proliferation via its downstream target gene product, LATS2.  相似文献   

7.
Dysregulation of HSG triggers vascular proliferative disorders   总被引:27,自引:0,他引:27  
Chen KH  Guo X  Ma D  Guo Y  Li Q  Yang D  Li P  Qiu X  Wen S  Xiao RP  Tang J 《Nature cell biology》2004,6(9):872-883
Vascular proliferative disorders, such as atherosclerosis and restenosis, are the most common causes of severe cardiovascular diseases, but a common molecular mechanism remains elusive. Here, we identify and characterize a novel hyperplasia suppressor gene, named HSG (later re-named rat mitofusin-2). HSG expression was markedly reduced in hyper-proliferative vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rat arteries, balloon-injured Wistar Kyoto rat arteries, or ApoE-knockout mouse atherosclerotic arteries. Overexpression of HSG overtly suppressed serum-evoked VSMC proliferation in culture, and blocked balloon injury induced neointimal VSMC proliferation and restenosis in rat carotid arteries. The HSG anti-proliferative effect was mediated by inhibition of ERK/MAPK signalling and subsequent cell-cycle arrest. Deletion of the p21(ras) signature motif, but not the mitochondrial targeting domain, abolished HSG-induced growth arrest, indicating that rHSG-induced anti-proliferation was independent of mitochondrial fusion. Thus, rHSG functions as a cell proliferation suppressor, whereas dysregulation of rHSG results in proliferative disorders.  相似文献   

8.
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome‐mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC‐derived exosomes (MSC‐Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon‐induced vascular injury. Our results showed that MSC‐Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR‐125b was enriched in MSC‐Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3? untranslated region. Additionally, MSC‐Exo and exosomally transferred miR‐125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC‐Exo can transfer miR‐125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR‐125b may be a therapeutic target in the treatment of vascular diseases.  相似文献   

9.
We reported that carbon monoxide (CO) generated through heme oxygenase (HO) inhibits mitogen-induced proliferation of vascular smooth muscle cells (VSMCs). We report that balloon injury induces HO-1, the stress-inducible isozyme of HO, in VSMCs and inhibits neointimal formation through the action of endogenous CO. Northern blot analysis and immunohistochemistry revealed that HO-1 is markedly induced in the media as early as 1 day after injury, whereas only a little expression was detected in the intact carotid artery. The neointimal proliferative changes were augmented or inhibited by the HO inhibitors or inducer, respectively, and effects of these interventions were not altered by suppression of endogenous nitric oxide (NO), if any. To elucidate the mechanisms by which HO controls the proliferative changes, effects of alterations in the HO reaction were examined by determining angiotensin II-elicited VSMC proliferation in vitro: the HO inducer attenuated and its inhibitor restored the proliferative response to angiotensin II (1 nM and 100 nM). Hemoglobin, a reagent trapping both NO and CO, but not met-hemoglobin, which can capture NO but not CO, augmented the proliferative response. These data suggest that endogenous CO serves as a protective factor that limits the excessive VSMC proliferation associated with vascular diseases.  相似文献   

10.
11.
Summary A20 was originally characterized as a TNF-inducible gene in human umbilical vein endothelial cells. It is also induced in many other cell types by a wide range of stimuli. Expression of A20 has been shown to protect from TNF-induced apoptosis and also functions via a negative-feedback loop to block NF-kappaB activation induced by TNF and other stimuli. However, there are no reports on whether A20 can inhibit vascular smooth muscle cell proliferation in␣vivo. Here, we examined the effects of A20 on neointimal formation after balloon injury and TNF-α-induced vascular smooth muscle cells (VSMCs) proliferation and migration, as well as related molecular mechanisms in vitro and in vivo. We introduced adenovirus expressing A20 or GFP into rat carotid arterial segments after balloon injury. The effects of A20 were evaluated 14 days after gene delivery with morphometry and immunohistochemical staining for proliferating and apoptotic cells. Ad-A20 infection resulted in a significantly lower intima to media ratio and a greater lumen area compared with Ad-GFP infected group. Proliferation index was significantly reduced 14 days in Ad-A20 infection group. However, apoptotic index and caspase-3 activity were not significantly different between any groups at 14 days. In vitro experiments were performed to show that A20 markedly inhibited TNF-α-induced proliferation and migration in VSMCs. Further studies showed that A20 expression blocked artery injury- and TNF-α-activated PI3K/Akt/GSK3β/CREB pathway in vivo and in vitro. In conclusion, A20 attenuates neointimal formation after arterial injury as well as cell proliferation and migration in response to TNF-α in VSMCs through blocking PI3K/Akt/GSKβ-dependent activation of CREB. Ai-Bing Wang and Hong-Liang Li – contributed equally to this work. Contract grant sponsor: “973” Basic Research Form of China Contract Grant Number: 2006CB503801 and 2005CB522507  相似文献   

12.
Oxidative stress has been implicated in several steps leading to the development of diabetic vascular complications. The purpose of this study was to determine the efficacy and the possible mechanism of puerarin on high-glucose (HG; 25 mM)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a carotid arterial balloon injury model of obese Zucker rats. Our data demonstrated that puerarin significantly inhibited rat VSMC proliferation as well as reactive oxygen species (ROS) generation and NADPH oxidase activity induced by HG treatment. Further studies revealed that HG treatment resulted in phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits, leading to NADPH oxidase activation. Puerarin treatment remarkably disrupted the phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits. Blocking PKCβ2 by infection with AdDNPKCβ2 also abolished HG-induced phosphorylation and membrane translocation of Rac1, p47phox, and p67phox subunits as well as ROS production and NADPH oxidase activation in VSMCs. In vivo neointimal formation of obese Zucker rats evoked by balloon injury was evidently attenuated by the administration of puerarin. These results demonstrate that puerarin may exert inhibitory effects on HG-induced VSMC proliferation via interfering with PKCβ2/Rac1-dependent ROS pathways, thus resulting in the attenuation of neointimal formation in the context of hyperglycemia in diabetes mellitus.  相似文献   

13.
Sinomenine, a pure alkaloid extract from Sinomenium acutum, has anti-inflammatory and immunoregulatory functions. This study investigated the efficiency and the signalling pathways involved in the effect of sinomenine on vascular smooth muscle cell (VSMC) dedifferentiation in response to platelet-derived growth factor (PDGF)-BB stimulation and vascular injury. VSMCs were isolated from rat aorta and preincubated with sinomenine before being stimulated with PDGF-BB. WST and BrdU incorporation assays were used to evaluate VSMC proliferation. Flow cytometric analysis was performed for testing the cell cycle progression. The cell migration of VSMCs were analysed using a Transwell system. The expression of VSMC specific genes and signalling proteins were tested by Western blot. For the animal study, C57/BL6 mice were fed either normal rodent chow diets or sinomenine chow diets that supplemented with 0.09 % sinomenine (w/w) in the normal chows for 14 days before carotid artery wire injury. PDGF-BB activated the dedifferentiation of VSMCs characterised by decreased expression of SMA, Smoothelin and SM22α. However, sinomenine treatment preserved the dedifferentiation in response to PDGF-BB. The activations of mitogen-activated protein kinase extracellular signal-regulated kinases, Akt, GSK3β and STAT3 induced by PDGF-BB were also inhibited in sinomenine-treated VSMCs. In vivo evidence with wire-injured mice exhibited a reduction in neointimal area and an increase in smooth muscle-specific gene expression in the sinomenine-treated group. In this study, we found that sinomenine-suppressed VSMC phenotype switching induced by PDGF-BB in vitro and neointimal formation in vivo. Therefore, sinomenine is a potential candidate to be used in the treatment of vascular proliferative disease.  相似文献   

14.
15.
Angiotensin II (ANG II) promotes neointimal growth in the balloon-injured rat carotid artery. However, the mechanism by which ANG II stimulates neointimal growth during vascular injury is not known. In cultured vascular smooth muscle cells, ANG II activates Akt through cytosolic phospholipase A2 (cPLA2)-dependent phospholipase D2 (PLD2). This study was conducted to determine whether ANG II-induced neointimal thickening is mediated via cPLA2- and PLD2-activated Akt in balloon-injured rat carotid arteries. ANG II-stimulated neointimal growth was inhibited by exposure of the injured carotid arteries to an adenovirus containing a dominant negative Akt mutant (intima-to-media ratio from 3.01 +/- 0.31 to 1.44 +/- 0.14, P < 0.01) or a retrovirus containing cPLA2 small interfering RNA (siRNA; intima-to-media ratio from 3.01 +/- 0.31 to 1.16 +/- 0.36, P < 0.001) or PLD2 siRNA (intima-to-media ratio from 3.01 +/- 0.31 to 1.33 +/- 0.11, P < 0.001). The effect of cPLA2 and PLD2 siRNA to reduce the ANG II-induced increase in neointimal thickening was associated with reduced expression of cPLA2 and PLD2 as determined by immunohistochemical analysis in injured carotid arteries. Western blot analysis showed that Akt phosphorylation that was increased by ANG II was inhibited in injured carotid arteries 2 days after exposure to cPLA2 or PLD2 siRNA or in injured arteries isolated after exposure to these agents for 30 min and then placed in tissue culture media for 24 h in the presence of these agents. These data suggest that the ANG II-induced neointimal growth is mediated by the activation of Akt through a mechanism dependent on cPLA2 and PLD2 activation in balloon-injured rat carotid arteries.  相似文献   

16.
Postangioplasty and in-stent restenosis remain ominous problems in percutaneous coronary intervention where good animal models of restenosis proneness and resistance are needed. We accidentally discovered that the carotid arteries (CAs) of the Harlan and Sasco substrains of Sprague-Dawley rats display drastically different restenosis phenotypes following balloon-induced endothelial denudation. When subjected to balloon injury, Sasco CAs exhibited significantly larger neointimal mass than did Harlan CAs at both days 14 and 32, as evidenced by a higher intima-to-media ratio and a greater number of intimal cells in Sasco CAs. This was due to a greater cell proliferation and to a less vigorous apoptosis of Sasco neointima, as assessed by 5-bromo-2'-deoxyuridine and terminal deoxynucleotidyl transferase-deoxyuridine nick-end labeling staining, respectively. At a cellular level, whereas vascular smooth muscle cells (VSMCs) isolated from Sasco and Harlan CAs were identical in morphology and in propensity to migrate, Sasco VSMCs proliferated more robustly and died far less, suggesting that under the exact same microenvironment, Sasco and Harlan VSMCs respond to growth and noxious stimuli in a drastically different fashion and that Sasco's significantly more robust neointimal proliferation after vascular injury in vivo can be accounted for by these intrinsic differences in VSMCs of these substrains in vitro. Sasco and Harlan Sprague-Dawley rats as well as VSMCs from these rats will prove to be powerful tools to study genes involved in the pathogenesis of restenosis.  相似文献   

17.
PDGF-D contributes to neointimal hyperplasia in rat model of vessel injury   总被引:7,自引:0,他引:7  
In this study, we determined the role of PDGF-D, a new member of the PDGF family, in a rat model of balloon injured artery made with a 2F catheter in Sprague-Dawley male rats. PDGF-D expression was studied in the injured and control segments of abdominal aorta. The function of PDGF-D was evaluated in rat vascular smooth muscle cells stably transfected with PDGF-D gene. We found that in normal abdominal aorta, PDGF-D was highly expressed in adventia, moderate in endothelia, and unidentified in media. Stable transfection of PDGF-D gene into vascular smooth muscle cells increased the cell migration by 2.2-fold, and the proliferation by 2.3-fold, respectively, and MMP-2 production and activity as well. These results support the fact that PDGF-D is involved in the formation of neointimal hyperplasia induced by balloon catheter injury and may serve as a target in preventing vascular restenosis after coronary angioplasty.  相似文献   

18.
Phenotypic differentiation of adventitial fibroblasts to myofibroblasts is an essential feature of vascular remodeling. Here, we carried out perivascular gene transfer of dominant-negative N19RhoA to investigate whether antagonism of RhoA signaling attenuates neointimal formation following rat carotid artery balloon injury and alters TGF-β1-Smad2-induced differentiation of adventitial fibroblasts to myofibroblasts. Perivascular delivery of an adenovirus coexpressing dominant-negative N19RhoA and humanized Renilla green fluorescent protein (hrGFP) (Ad-N19RhoA-hrGFP), as demonstrated by hrGFP staining, suppressed neointimal formation at 7 and 14 days post-injury. Ad-N19RhoA-hrGFP administration inhibited neointimal α-smooth muscle-actin and Calponin expression, as markers of myofibroblast differentiation and perivascular collagen deposition, at 14 days after balloon injury. Ad-N19RhoA-hrGFP administration also inhibited adventitial Smad2 phosphorylation, but did not alter local TGF-β1 and total-Smad2 expression after injury. Our results provide evidence that perivascular gene transfer of dominant-negative N19RhoA blocks TGF-β1-Smad2-induced differentiation of adventitial fibroblasts to myofibroblasts, which contributes to intimal hyperplasia after balloon injury.  相似文献   

19.

Background

Hyaluronan (HA) is a primary component of the extracellular matrix of cells, and it is involved in the pathogenesis of atherosclerosis. The purpose of this study was to investigate the role of HA in neointimal formation after vascular injury and determine its tissue-specific role in vascular smooth muscle cells (VSMCs) by using a cre-lox conditional transgenic (cTg) strategy.

Methods and Results

HA was found to be expressed in neointimal lesions in humans with atherosclerosis and after wire-mediated vascular injury in mice. Inhibition of HA synthesis using 4-methylumbelliferone markedly inhibited neointimal formation after injury. In vitro experiments revealed that low-molecular-weight HA (LMW-HA) induced VSMC activation, including migration, proliferation, and production of inflammatory cytokines, and reactive oxygen species (ROS). The migration and proliferation of VSMCs were mediated by the CD44/RhoA and CD44/ERK1/2 pathways, respectively. Because HA synthase 2 (HAS2) is predominantly expressed in injured arteries, we generated cTg mice that overexpress the murine HAS2 gene specifically in VSMCs (cHAS2/CreSM22α mice) and showed that HA overexpression markedly enhanced neointimal formation after cuff-mediated vascular injury. Further, HA-overexpressing VSMCs isolated from cHAS2/CreSM22α mice showed augmented migration, proliferation, and production of inflammatory cytokines and ROS.

Conclusion

VSMC-derived HA promotes neointimal formation after vascular injury, and HA may be a potential therapeutic target for cardiovascular disease.  相似文献   

20.
Electric fields (EFs) exert biological effects on promoting wound healing by facilitating cell division, cell proliferation, and cell directional migration toward the wound. In this study, we examined the inhibitory effect of direct-current (DC) EFs on the formation of neointimal hyperplasia and the possible mechanism in an abdominal aorta balloon injury rabbit model. Sixty rabbits were divided into normal, control, and experimental groups. After establishment of the abdominal aorta balloon injury model, electrodes were implanted into the bilateral psoas major muscle in control and experimental groups. Only the experimental group received electric stimulation (EFs applied at 3 or 4 V/cm for 30 min/day) for 1, 2, and 4 weeks, respectively. Neointimal hyperplasia of the abdominal aorta and proliferation of vascular smooth muscle cells (VSMCs) were measured. Expressions of collagen, p27(Kip1), and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) were detected. Results showed that the ratio of the tunica intima area to the tunica media area, the expression of type-I collagen in the neointimal, and the proliferating cell nuclear antigen index in experimental groups were significantly less than those in control groups 2 weeks post-operation (P< 0.01). Expressions of p27(Kip1) and PTEN were increased in experimental groups compared with control groups (P< 0.01). In conclusion, our results suggested that the application of DC EFs could inhibit neointimal hyperplasia and reduce collagen expression after abdominal aorta balloon injury. This was probably induced by upregulation of PTEN/p27(Kip1) expression, thereby inhibiting VSMC proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号