首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taking the eye strain out of environmental cryptosporidium analysis   总被引:2,自引:0,他引:2  
The use of flow cytometry to detect Cryptosporidium oocysts in water was investigated using a Skatron Argos 100–5 instrument. Raw and treated drinking water samples seeded with oocysts and treated sewage samples known to contain oocysts were analysed by flow cytometry and by fluorescent microscopy. Oocysts could be rapidly detected in the treated sewage in raw and treated drinking water when the latter were seeded with levels of 1000 oocysts/1 or higher. Flow cytometry proved to be easier and quicker than fluorescent microscopy but an improvement in sensitivity is necessary before flow cytometery can be used for routine monitoring of drinking water supplies.  相似文献   

2.
An intestinal protozoan parasite, Cryptosporidium parvum, is a major cause of waterborne gastrointestinal disease worldwide. Detection of Cryptosporidium oocysts in potable water is a high priority for the water treatment industry to reduce potential outbreaks among the consumer populace. Anti-Cryptosporidium oocyst polyclonal and monoclonal antibodies were tested as capture and detection reagents for use in a fiber optic biosensor assay for the detection of Cryptosporidium oocysts. Antibodies were validated using enzyme-linked immunosorbent assays, flow cytometry, Western blotting and fluorescent microscopy. Oocysts could be detected at a concentration of 105 oocysts/ml when the polyclonal antibodies were used as the capture and detection reagents. When oocysts were boiled prior to detection, a ten-fold increase in sensitivity was achieved using the polyclonal antibody. Western blotting and immunofluorescence revealed that both the monoclonal and polyclonal antibodies recognize a large (>300 kDa) molecular weight mucin-like antigen present on the surface of the oocyst wall. The polyclonal antibody also reacted with a small (105 kDa) molecular weight antigen that was present in boiled samples of oocysts. Preliminary steps to design an in-line biosensor assay system have shown that oocysts would have to be concentrated from water samples and heat treated to allow detection by a biosensor assay.  相似文献   

3.
The development of a reliable method of using PCR for detection of Cryptosporidium oocysts in environmental samples with oligonucleotide primers which amplify a portion of the sequence encoding the small (18S) subunit of rRNA producing a 435-bp product was demonstrated. The PCR assay was found to provide highly genus-specific detection of Cryptosporidium spp. after release of nucleic acids from oocysts by a simple freeze-thaw procedure. The assay routinely detected 1 to 10 oocysts in purified oocyst preparations, as shown by direct microscopic counts and by an immunofluorescence assay. The sensitivity of the PCR assay in some seeded environmental water samples was up to 1,000-fold lower. However, this interference was eliminated by either flow cytometry or magnetic-antibody capture. Sensitivity was also improved 10- to 1,000-fold by probing of the PCR product on dot blots with an oligonucleotide probe detected by chemiluminescence. Confirmation of the presence of Cryptosporidium oocysts in water samples from the outbreak in Milwaukee, Wis., was obtained with this technique, and PCR was found to be as sensitive as immunofluorescence for detection of oocysts in wastewater concentrates.  相似文献   

4.
Cryptosporidium and Giardia species are enteric protozoa which cause waterborne disease. The detection of these organisms in water relies on the detection of the oocyst and cyst forms or stages. Monoclonal and polyclonal antibodies were compared for their abilities to react with Giardia cysts and Cryptosporidium oocysts after storage in water, 3.7% formaldehyde, and 2.5% potassium dichromate, upon exposure to bleach, and in environmental samples. Three monoclonal antibodies to Cryptosporidium parvum were evaluated. Each test resulted in an equivalent detection of the oocysts after storage, after exposure to bleach, and in environmental samples. Oocyst levels declined slightly after 20 to 22 weeks of storage in water, and oocyst fluorescence and morphology were dull and atypical. Oocyst counts decreased after exposure to 2,500 mg of sodium hypochlorite per liter, and fluorescence and phase-contrast counts were similar. Sediment due to algae and clays found in environmental samples interfered with the detection of oocysts on membrane filters. Two monoclonal antibodies and a polyclonal antibody directed against Giardia lamblia cysts were evaluated. From the same seeded preparations, significantly greater counts were obtained with the polyclonal antibody. Of the two monoclonal antibodies, one resulted in significantly lower cyst counts. In preliminary studies, the differences between antibodies were not apparent when used on the environmental wastewater samples. After 20 to 22 weeks in water, cyst levels declined significantly by 67%. Cysts were not detected with monoclonal antibodies after exposure to approximately 5,000 mg of sodium hypochlorite per liter.  相似文献   

5.
Cryptosporidium and Giardia species are enteric protozoa which cause waterborne disease. The detection of these organisms in water relies on the detection of the oocyst and cyst forms or stages. Monoclonal and polyclonal antibodies were compared for their abilities to react with Giardia cysts and Cryptosporidium oocysts after storage in water, 3.7% formaldehyde, and 2.5% potassium dichromate, upon exposure to bleach, and in environmental samples. Three monoclonal antibodies to Cryptosporidium parvum were evaluated. Each test resulted in an equivalent detection of the oocysts after storage, after exposure to bleach, and in environmental samples. Oocyst levels declined slightly after 20 to 22 weeks of storage in water, and oocyst fluorescence and morphology were dull and atypical. Oocyst counts decreased after exposure to 2,500 mg of sodium hypochlorite per liter, and fluorescence and phase-contrast counts were similar. Sediment due to algae and clays found in environmental samples interfered with the detection of oocysts on membrane filters. Two monoclonal antibodies and a polyclonal antibody directed against Giardia lamblia cysts were evaluated. From the same seeded preparations, significantly greater counts were obtained with the polyclonal antibody. Of the two monoclonal antibodies, one resulted in significantly lower cyst counts. In preliminary studies, the differences between antibodies were not apparent when used on the environmental wastewater samples. After 20 to 22 weeks in water, cyst levels declined significantly by 67%. Cysts were not detected with monoclonal antibodies after exposure to approximately 5,000 mg of sodium hypochlorite per liter.  相似文献   

6.
BACKGROUND: Accurate detection and quantification of Cryptosporidium oocysts in water are a challenge to the water industry. This article demonstrates a way to fluorescently label Cryptosporidium oocysts, based on fluorescence resonance energy transfer (FRET). Labeled oocysts can then be applied to environmental waters and their movement followed by flow cytometric detection and enumeration of the FRET-labeled oocysts, as demonstrated here with environmental water samples. METHODS: Cryptosporidium oocysts were labeled with three fluorochromes, FITC, Texas red, and Cy7, that through FRET yielded a Stokes shift of approximately 272 nm with excitation from a standard argon laser emitting at 488 nm. Defined flow cytometric settings and gatings were used to select FITC/green (530-nm), Texas red/red (650-nm), and Cy7/infrared (780-nm) fluorescing particles with light scatter properties similar to oocysts. Water concentrates were seeded with 10 tri-labeled oocysts and were analyzed using flow cytometry. Unseeded water concentrates were also analyzed. RESULTS: Analysis of unseeded water concentrates detected no autofluorescent particle similar to the labeled oocysts. Labeled oocysts were detected successfully with up to 85% recovery in water concentrates spiked with 10 tri-labeled oocysts. CONCLUSIONS: Low numbers of FRET-labeled oocysts can be quantified and clearly distinguished from autofluorescing background in environmental water concentrates.  相似文献   

7.
The importance of waterborne transmission of Cryptosporidium parvum to humans has been highlighted by recent outbreaks of cryptosporidiosis. The first step in a survey of contaminated water currently consists of counting C. parvum oocysts. Data suggest that an accurate risk evaluation should include a determination of viability and infectivity of counted oocysts in water. In this study, oocyst infectivity was addressed by using a suckling mouse model. Four-day-old NMRI (Naval Medical Research Institute) mice were inoculated per os with 1 to 1,000 oocysts in saline. Seven days later, the number of oocysts present in the entire small intestine was counted by flow cytometry using a fluorescent, oocyst-specific monoclonal antibody. The number of intestinal oocysts was directly related to the number of inoculated oocysts. For each dose group, infectivity of oocysts, expressed as the percentage of infected animals, was 100% for challenge doses between 25 and 1,000 oocysts and about 70% for doses ranging from 1 to 10 oocysts/animal. Immunofluorescent flow cytometry was useful in enhancing the detection sensitivity in the highly susceptible NMRI suckling mouse model and so was determined to be suitable for the evaluation of maximal infectivity risk.  相似文献   

8.
Immunofluorescence assay (IFA) and immunomagnetic electrochemiluminescence (IM-ECL) were used for comparison of the percent recovery of Cryptosporidium parvum in environmental water samples obtained from a spring draining a karst basin. The monoclonal antibodies to C. parvum, isotype IgG3 were used for optimization of the IM-ECL protocol. The combination of biotinylated and TAG-labeled anti-C. parvum antibodies with the streptavidin beads gave a linear regression slope for log ECL vs. log fresh oocysts of 0.79 (from 5 to 5,000 oocysts), which indicates a constant ECL signal per oocyst. Standard curves gave a dynamic range of 5 to 5,000 oocysts/ml (fresh) and 10 to 100,000 cells/ml (4-month-old oocysts) with the maximum limit of linear detection higher than 100,000. The linear slope of 4-month-old oocysts decreased to 0.62, which indicates that ECL signal is a function of oocyst age. The experiment associated with bead storage time shows that even after 4 months of storage of the biotinylated antibodies, the complex retains the ability for binding the oocysts and generating the ECL signal. Based on the IFA results in the experiment evaluating different protocols for oocysts recovery from karst water samples, the most efficient protocol involved dispersion, followed by flotation and immunomagnetic separation (IMS) (24% recovery). The ECL results obtained in that experiment were very similar to the results obtained in the IFA method, which indicates that the IM-ECL method is accurate. Results of the IFA in the study of the prevalence of C. parvum in the groundwater showed that oocysts were present in 78% of 1 L water samples with average number of oocysts of 6.4+/-5.5 and ranged from 0 (13 samples) to 23.3 (2 samples). The ECL signal generated from these water samples ranged from 3,771 to 622 (average 1,620+/-465). However, the background value estimated in groundwater samples with low number of oocysts detected by IFA was highly variable and elevated (from 3,702 to 272, average 1,503+/-475). The background value as a result of nonspecific binding to beads by unidentified organic components in the water can inhibit or even completely mask the signal generated by oocysts. Our investigations showed that the IM-ECL method appears to be promising for the qualitative and quantitative detection of C. parvum from the environmental water; however, the method requires further development to improve sensitivity and account for background signals.  相似文献   

9.
The importance of waterborne transmission of Cryptosporidium parvum to humans has been highlighted by recent outbreaks of cryptosporidiosis. The first step in a survey of contaminated water currently consists of counting C. parvum oocysts. Data suggest that an accurate risk evaluation should include a determination of viability and infectivity of counted oocysts in water. In this study, oocyst infectivity was addressed by using a suckling mouse model. Four-day-old NMRI (Naval Medical Research Institute) mice were inoculated per os with 1 to 1,000 oocysts in saline. Seven days later, the number of oocysts present in the entire small intestine was counted by flow cytometry using a fluorescent, oocyst-specific monoclonal antibody. The number of intestinal oocysts was directly related to the number of inoculated oocysts. For each dose group, infectivity of oocysts, expressed as the percentage of infected animals, was 100% for challenge doses between 25 and 1,000 oocysts and about 70% for doses ranging from 1 to 10 oocysts/animal. Immunofluorescent flow cytometry was useful in enhancing the detection sensitivity in the highly susceptible NMRI suckling mouse model and so was determined to be suitable for the evaluation of maximal infectivity risk.  相似文献   

10.
BACKGROUND: Cryptosporidium detection in water and environmental samples has increased during the last years, largely due to an increase in the number of reported waterborne outbreaks of cryptosporidiosis and the implementation of new regulations about Cryptosporidium monitoring in water supplies. The aim of this study was to validate and compare the capacity of two laser scanning cytometers commercially available (LSC and ChemScanRDI), against manual microscopic enumeration of Cryptosporidium oocysts in surface water and reference material samples. METHODS: Reference material and surface water samples were analysed by two laser scanning cytometers methodologies and by manual epifluorescence microscopy. Two mAbs from commercial suppliers were used to evaluate background reduction. RESULTS: Highly significant correlations were obtain between both cytometers (R(2) = 0.99) and with manual microscopy (R(2) = 0.98), showing that oocysts counts made by cytometers were equivalent to those obtained with conventional methods. We observed a variability in oocysts counts when different antibodies where used with laser scanning cytometers and manual microscopy. CONCLUSIONS: This study showed the efficacy of the laser scanning technology (LSC and ChemScanRDI), as an automated and a more standardized alternative to manual epifluorescence microscopy examination, for Cryptosporidium detection in water samples. High quality antibodies are needed for automated enumeration as well as for manual microscope observations.  相似文献   

11.
Although single-color flow cytometry has been shown to be more sensitive than fluorescence microscopy for the quantification of Cryptosporidium parvum oocysts, this method has not been optimized. Monoclonal antibody OW50, specific to the cell wall of oocysts, was conjugated to superparamagnetic particles, to fluorescein isothiocyanate, and to r-phycoerythrin. The oocysts were then double stained with the fluorochrome-labeled OW50 and were placed in tubes with known numbers of highly fluorescent polystyrene beads, allowing quantification of the oocysts without dependence on acquired sample volume by flow cytometry. Data from 2-color flow cytometry using logical gating of the oocysts and beads showed a linear relationship between dilutions of a purified oocyst suspension and the mean numbers of oocysts detected (r2 = 1.00). An average of 15 purified oocysts/ml were counted in a dilution with a theoretical concentration of 12 oocysts/ml. Known numbers of purified oocysts were seeded into normal mouse fecal specimens, captured by OW50-labeled immunomagnetic particles, eluted with 5% potassium dichromate at low pH, and double stained with fluorochrome-labeled OW50. By flow cytometry, the mean recovery was 43.1% (+/-8.3%), and as few as 133 oocysts were detected. The captured and eluted oocysts were infective in neonatal BALB/c mice. This 2-color flow cytometry method, used in conjunction with the capture and elution of oocysts by and from immunomagnetic particles, provides a powerful tool for not only the quantification and purification of C. parvum oocysts from different sources but also for the characterization of oocysts in vitro and in vivo.  相似文献   

12.
AIMS: To determine the occurrence and levels of Cryptosporidium parvum oocysts in wastewater and surface waters in north-eastern Spain. METHODS AND RESULTS: Samples from five sewage treatment plants were taken monthly and quarterly during 2003. In addition, water was collected monthly from the River Llobregat (NE Spain) during the period from 2001 to 2003. All samples were analysed by filtration on cellulose acetate filters or through Envirocheck using EPA method 1623, followed by immunomagnetic separation and examination by laser scanning cytometry. All raw sewage, secondary effluent and river water samples tested were positive for Cryptosporidium oocysts. Of the tertiary sewage effluents tested, 71% were positive for Cryptosporidium oocysts. The proportion of viable oocysts varied according to the sample. CONCLUSIONS: Two clear maxima were observed during spring and autumn in raw sewage, showing a seasonal distribution and a correlation with the number of cryptosporidiosis cases and rainfall events. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides the first data on the occurrence of Cryptosporidium oocysts in natural waters in north-eastern Spain.  相似文献   

13.
BACKGROUND: Particulate surfaces such as beads are routinely used as platforms for molecular assembly for fundamental and practical applications in flow cytometry. Molecular assembly is transduced as the direct analysis of fluorescence, or as a result of fluorescence resonance energy transfer. Binding of fluorescent ligands to beads sometimes alters their emission yield relative to the unbound ligands. Characterizing the physical basis of factors that regulate the fluorescence yield of bound fluorophores (on beads) is a necessary step toward their rational use as mediators of numerous fluorescence based applications. METHODS: We have examined the binding between two biotinylated and fluoresceinated beta-endorphin peptides and commercial streptavidin beads using flow cytometric analysis. We have analyzed the assembly between a specific monoclonal antibody and an endorphin peptide in solution using resonance energy transfer and compared the results on beads in flow cytometry using steady-state and time-resolved fluorescence. RESULTS: We have defined conditions for binding biotinylated and fluoresceinated endorphin peptides to beads. These measurements suggest that the peptide structure can influence both the intensity of fluorescence and the mode of peptide binding on the bead surface. We have defined conditions for binding antibody to the bead using biotinylated protein A. We compared and contrasted the interactions between the fluoresceinated endorphin peptide and the rhodamine- labeled antibody. In solution we measure a K(d) of <38 nM by resonance energy transfer and on beads 22 nM. DISCUSSION: Some issues important to the modular assembly of a fluorescence resonance energy transfer (FRET) based sensing scheme have been resolved. The affinity of peptides used herein is a function of their solubility in water, and the emission intensity of the bound species depends on the separation distance between the fluorescein and the biotin moiety. This is due to the quasi-specific quenching interaction between the fluorescein and a proximal binding pocket of streptavidin. Detection of antibodies in solution and on beads either by FRET or capture of fluorescent ligands by dark antibodies subsequently enables the determination of K(d) values, which indicate agreement between solution and flow cytometric determinations.  相似文献   

14.
Cryptosporidium parvum oocysts in drinking water have been implicated in outbreaks of diarrheal disease. Current methods for monitoring environmental exposures to C. parvum only account for total number of oocysts without regard for the viability of the parasite. Measurement of oocyst viability, as indicated by an oocyst's ability to excyst, is useful because over time oocysts lose the ability to excyst and become noninfective. Thus, correlating the number of viable oocysts in drinking water with incidence and risk for disease should be more reliable than using the total number of oocysts. We have developed a quantitative assay capable of detecting low numbers of excystable, sporozoite-releasing C. parvum oocysts in turbid water samples. Monoclonal (CP7) and polyclonal antibodies have been developed against a sporozoite antigen released only during excystation or when the oocyst is mechanically disrupted. CP7 is specific for C. parvum and does not react with C. baileyi, C. muris, C. serpentis, Giardia spp., Eimeria spp., or E. nieschulzi. In this assay, oocysts in the test sample are first excysted and then centrifuged. The soluble sporozoite antigen is captured by CP7 attached to a magnetic bead. The captured antigen is then detected by ruthenium-labeled polyclonal antibodies via electrochemiluminescence. The CP7 viability assay can detect as few as 50 viable oocysts in a 1-ml assay sample with a turbidity as high as 200 Nephelometric turbidity units. This sensitive, turbidity-tolerant assay for oocyst viability may permit a better assessment of the disease risk associated with the presence of environmental oocysts.  相似文献   

15.
AIMS: To describe the development, evaluation and applicability of a complete method for the detection of Toxoplasma gondii in water. METHODS AND RESULTS: The method incorporated concentration of water samples by Al(2)(SO(4))(3)-flocculation, purification by discontinuous sucrose gradients and detection of toxoplasmic DNA by 18S-rRNA nested PCR. Tap water replicates and natural water samples were seeded with defined numbers of Toxoplasma oocysts and processed for evaluation studies. When applied to environmental samples, the method gave highest detection sensitivities of 100 oocysts in river water and 10 oocysts in well- and sea water. The method was finally applied in 60 water samples of different quality and origin collected over a 14-month period. Toxoplasmic DNA was detected in four samples. CONCLUSIONS: The method offers an alternative towards improving current methods that can be used for the detection of Toxoplasma oocysts in environmental water samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The method in its current form will be helpful for assessment of Toxoplasma contamination in water resources, particularly after outbreak events.  相似文献   

16.
AIMS: Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from tap water. METHODS AND RESULTS: Ferric sulphate, aluminium sulphate and calcium carbonate were compared for their recovery efficiency of C. parvum oocysts from tap water. Lower mean recovery was achieved by calcium carbonate (38.8%) compared with ferric sulphate (61.5%) and aluminium sulphate (58.1%) for the recovery of 2.5 x 10(5) oocysts l(-1); 2.5 oocysts l(-1) and 1 oocyst l(-1) were adequately purified using ferric sulphate flocculation. In vitro excystation experiments showed that ferric sulphate flocculation does not markedly reduce the viability of oocysts. CONCLUSIONS: Ferric sulphate flocculation is a simple and effective tool for the purification of C. parvum oocysts from tap water. SIGNIFICANCE AND IMPACT OF THE STUDY: The high recovery rates and low impact on oocyst viability provided by ferric sulphate flocculation might be useful for the detection of Cryptosporidium oocysts in environmental water samples.  相似文献   

17.
BACKGROUND: Significant developments in biological applications are occurring through the incorporation of Quantum Dots (QDs) as biological labels. The demonstration of QDs unique optical properties may have important implications for the study of environmental samples, where microorganisms of interest need to be isolated away from the background debris. METHODS: Flow cytometric analysis was used to determine the fluorescence intensity of oocysts after mAb staining by QDs or organic fluorophore conjugates. In addition, the level of non-specific binding to detrital particles within a control water concentrate was estimated using the optimal staining concentration determined for each mAb analyzed. RESULTS: Under 488 nm excitation, oocysts stained with QD-conjugates exhibited significantly lower fluorescence intensity than organic conjugates. Moreover, the level of non-specific binding by QD-conjugates to detrital particles present in the water concentrate was significantly higher that of the organic conjugates. CONCLUSIONS: While QDs are noted for their superior spectral characteristics, they have been shown here to be unsuitable for conventional flow cytometric detection of Cryptosporidium. Therefore, we conclude that in their current form, QD's are severely limited for fluorescent detection of pathogens in environmental applications.  相似文献   

18.
Cell culture infectivity assays can provide an accurate means of detecting viable Cryptosporidium parvum oocysts from environmental samples or to test the effects of various treatments on oocyst infectivity. Cell culture assays can also be used to test candidate chemotherapeutic agents. The use of a human cell line provides a situation close to human infection. The present assay uses an anti-Cryptospordium primary antibody, combined with a biotinylated secondary antibody, and an immunoperoxidase detection system. Cryptosporidium parvum oocysts excysted in vitro when placed on monolayers of HCT-8 cells and developmental stages including schizonts and merozoites were visualized using light microscopy of the immunoperoxidase stained slides and by transmission electron microscopy of infected HCT-8 cell cultures. Because the immunoperoxidase system used gives a permanent preparation, the cell cultures can be retained and examined later. Dose titration of oocysts indicated that as few as 50 inoculated oocysts could be detected. The activity of paromomycin was evaluated in this system and 500 microg/ml produced a 97.8% reduction in infection.  相似文献   

19.
Routine monitoring of Cryptosporidium oocysts in water using flow cytometry   总被引:10,自引:2,他引:8  
A flow cytometric method for the routine analysis of environmental water samples for the presence of Cryptosporidium oocysts has been developed. It uses a Coulter Epics Elite flow cytometer to examine water samples and to separate oocysts from contaminating debris by cell sorting. The sorted particles are then rapidly screened by microscopy. The method has been evaluated and compared with direct epifluorescence microscopy on 325 river, reservoir and drinking water samples. The technique was found to be more sensitive, faster and easier to perform than conventional epifluorescent microscopy for the routine examination of water samples for Cryptosporidium.  相似文献   

20.
The proportion of oocysts of Cryptosporidium parvum showing a fold on oocyst walls when incubated with either fluorescent monoclonal antibody or a surface-reactive fluorescent dye was increased by incubating suspensions of oocysts with dimethyl sulfoxide, sucrose, or Hanks' balanced salt solution. Further incubation of sucrose-incubated oocysts with water showed this to be a reversible phenomenon. Oocysts demonstrating this fold after incubation in dimethyl sulfoxide were of the same viability as control oocysts and followed the same excystation dynamics. Despite this fold having been previously described as a suture, we were unable to find any evidence that this pattern of fluorescence highlighted the same suture that has been described in ultrastructural studies. Furthermore, oocysts were observed in which this fold was not always continuous with the gape in the oocyst wall through which the sporozoites had emerged. We propose that this fluorescently highlighted region or fold should no longer be described as a suture and question its validity as a diagnostic feature. When environmental and other samples are being examined for the presence of C. parvum oocysts, objects of appropriate size, shape, and fluorescence which do not demonstrate a surface fold should not necessarily be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号