首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Telomeres of mammalian chromosomes are composed of long tandem repeats (TTAGGG)n which bind in a sequence-specific manner two proteins-TRF1 and TRF2. In human somatic cells both proteins are mostly associated with telomeres and TRF1 overexpression resulting in telomere shortening. However, chromosomes of some mammalian species, e.g., Chinese hamster, have large interstitial blocks of (TTAGGG)n sequence (IBTs) and the blocks are involved in radiation-induced chromosome instability. In normal somatic cells of these species chromosomes are stable, indicating that the IBTs are protected from unequal homologous recombination. In this study we expressed V5-epitope or green fluorescent protein (GFP)-tagged human TRF1 in different lines of mammalian cells and analyzed distribution of the fusion proteins in interphase nucleus. As expected, transient transfection of human (A549) or African green monkey cells with GFP-N-TRF1 or TRF1-C-V5 plasmids resulted in the appearance in interphase nuclei of multiple faint nuclear dots containing GFP or V5 epitope which we believe to represent telomeres. Transfection of immortalized Chinese hamster ovary (CHO) cell line K1 which have extremely short telomeres with GFP-N-TRF1 plasmid leads to the appearance in interphase nuclei of large GFP bodies corresponding in number to the number of IBTs in these cells. Simultaneous visualization of GFP and IBTs in interphase nuclei of transfected CHO-K1 cells showed colocalization of both signals indicating that expressed TRF1 actually associates with IBTs. These results suggest that TRF1 may serve as general sensor of (TTAGGG)n repeats controlling not only telomeres but also interstitial (TTAGGG)n sequences.  相似文献   

3.
4.
A mammalian factor that binds telomeric TTAGGG repeats in vitro.   总被引:17,自引:6,他引:11       下载免费PDF全文
We have identified a DNA-binding activity with specificity for the TTAGGG repeat arrays found at mammalian telomeres. This factor, called TTAGGG repeat factor (TRF), is present in nuclear extracts of human, mouse, and monkey cells. TRF from HeLa cells was characterized in detail by electrophoretic mobility shift assays. It binds double-stranded TTAGGG repeats in linear and circular DNAs. Single-stranded repeats are not recognized. The optimal site for TRF appears to contain more than six contiguous TTAGGG repeats. Tandem arrays of TAGGG, TTTAGGG, TTTTAGGG, TTGGGG, and TTAGGC repeats do not bind TRF well, indicating that TRF preferentially recognizes the telomeric repeat sequence present at mammalian chromosome ends. The apparent molecular mass of this factor, based on recovery of TRF from sodium dodecyl sulfate-polyacrylamide gels, is approximately 50 kDa. We suggest that TRF binds along the length of mammalian telomeres.  相似文献   

5.
6.
Mammalian telomeres contain a duplex TTAGGG-repeat tract terminating in a 3' single-stranded overhang. TRF2 protein has been implicated in remodeling telomeres into duplex lariats, termed t-loops, in vitro and t-loops have been isolated from cells in vivo. To examine the features of the telomeric DNA essential for TRF2-promoted looping, model templates containing a 500 bp double-stranded TTAGGG tract and ending in different single-stranded overhangs were constructed. As assayed by electron microscopy, looped molecules containing most of the telomeric tract are observed with TRF2 at the loop junction. A TTAGGG-3' overhang of at least six nucleotides is required for loop formation. Termini with 5' overhangs, blunt ends or 3' termini with non-telomeric sequences at the junction are deficient in loop formation. Addition of non-telomeric sequences to the distal portion of a 3' overhang beginning with TTAGGG repeats only modestly diminishes looping. TRF2 preferentially localizes to the junction between the duplex repeats and the single-stranded overhang. Based on these findings we suggest a model for the mechanism by which TRF2 remodels telomeres into t-loops.  相似文献   

7.
端粒结合蛋白TRF2的研究进展   总被引:2,自引:0,他引:2  
张永炜  缪泽鸿  丁健 《生命科学》2006,18(3):239-243
端粒DNA结合蛋白TRF2(TTAGGG repeat binding factor-2)以二聚体形式通过Myb结构域与端粒重复序列TTAGGG结合,并与TRF1、TIN2、Rap1、TINT1及POT1蛋白组成Shelterin蛋白复合物,协同在端粒动态平衡维持过程中起关键作用,进而影响整个基因组的稳定性。此外,TRF2在细胞DNA损伤应答过程中可能发挥重要作用。本文将对TRF2结构和功能研究的最新进展进行综述。  相似文献   

8.
Hara T  Chida K 《Gene》2002,283(1-2):11-16
In Chinese hamster extended blocks of telomeric-like repeats were previously detected by in situ hybridization at the pericentromeric region of most chromosomes and short arrays were localized at several interstitial sites. In this work, we analyzed the molecular organization of internal telomeric sequences (ITs) in the Chinese hamster genome. In genomic transfers hybridized with a telomeric probe, multiple Bal31 insensitive fragments were detected. Most of the fragments ranged in size between less than 1 kb and more than 100 kb and some were polymorphic. Fluorescence in situ hybridization experiments on DNA fibers and on elongated chromosomes showed that the pericentromeric ITs are composed of extensive and essentially continuous arrays of telomeric-like sequences. We then isolated three genomic regions which contain short ITs. These ITs are localized at interstitial sites (3q13-15, 3q21-26, 1p26) and are composed of 29-126 bp of (TTAGGG)(n) repeats. A peculiar feature of all the three ITs is the AT richness of the flanking sequences. Since AT-rich DNA is known to be unstable and characteristic of several mammalian fragile sites, we propose that the three ITs were inserted at these sites during the repair of double strand breaks.  相似文献   

9.
10.
Mammalian telomeres are composed of long arrays of TTAGGG repeats complexed with the TTAGGG repeat binding factor, TRF. Biochemical and ultrastructural data presented here show that the telomeric DNA and TRF colocalize in individual, condensed structures in the nuclear matrix. Telomeric TTAGGG repeats were found to carry an array of nuclear matrix attachment sites occurring at a frequency of at least one per kb. The nuclear matrix association of the telomeric arrays extended over large domains of up to 20-30 kb, encompassing the entire length of most mammalian telomeres. TRF protein and telomeric DNA cofractionated in nuclear matrix preparations and colocalized in discrete, condensed sites throughout the nuclear volume. FISH analysis indicated that TRF is an integral component of the telomeric complex and that the presence of TRF on telomeric DNA correlates with the compact configuration of telomeres and their association with the nuclear matrix. Biochemical fractionation of TRF and telomeric DNA did not reveal an interaction with the nuclear lamina. Furthermore, ultrastructural analysis indicated that the mammalian telomeric complex occupied sites throughout the nuclear volume, arguing against a role for the nuclear envelope in telomere function during interphase. These results are consistent with the view that mammalian telomeres form nuclear matrix- associated, TRF-containing higher order complexes at dispersed sites throughout the nuclear volume.  相似文献   

11.
Interaction of human Ku70 with TRF2   总被引:19,自引:0,他引:19  
Song K  Jung D  Jung Y  Lee SG  Lee I 《FEBS letters》2000,481(1):81-85
Ku, a heterodimer of 70- and 80-kDa subunits, plays a general role in the metabolism of DNA ends in eukaryotic cells, including double-strand DNA break repair, V(D)J recombination, and maintenance of telomeres. We have utilized the yeast two-hybrid system to identify Ku70-interacting proteins other than Ku80. Two reactive clones were found to encode the dimerization domain of TRF2, a mammalian telomeric protein that binds to duplex TTAGGG repeats at chromosome ends. This interaction was confirmed using bacterial fusion proteins and co-immunoprecipitations from eukaryotic cells overexpressing TRF2. The transfected TFR2 colocalized with Ku70.  相似文献   

12.
TIN2 mediates functions of TRF2 at human telomeres   总被引:6,自引:0,他引:6  
Telomeres are protective structures at chromosome ends and are crucial for genomic stability. Mammalian TRF1 and TRF2 bind the double-stranded telomeric repeat sequence and in turn are bound by TIN2, TANK1, TANK2, and hRAP1. TRF1 is a negative regulator of telomere length in telomerase-positive cells, whereas TRF2 is important for telomere capping. TIN2 was identified as a TRF1-interacting protein that mediates TRF1 function. We show here that TIN2 also interacts with TRF2 in vitro and in yeast and mammalian cells. TIN2 mutants defective in binding of TRF1 or TRF2 induce a DNA damage response and destabilize TRF1 and TRF2 at telomeres in human cells. Our findings suggest that the functions of TRF1 and TRF2 are linked by TIN2.  相似文献   

13.
Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA-binding domains (Dbds) form independent structural units. Despite these similarities, TRF1 and TRF2 have different functions at telomeres. The X-ray crystal structures of both TRF1- and TRF2-Dbds in complex with telomeric DNA (2.0 and 1.8 angstroms resolution, respectively) show that they recognize the same TAGGGTT binding site by means of homeodomains, as does the yeast telomeric protein Rap1p. Two of the three G-C base pairs that characterize telomeric repeats are recognized specifically and an unusually large number of water molecules mediate protein-DNA interactions. The binding of the TRF2-Dbd to the DNA double helix shows no distortions that would account for the promotion of t-loops in which TRF2 has been implicated.  相似文献   

14.
BACKGROUND: Mammalian telomeres consist of long tandem arrays of double-stranded TTAGGG sequence motif packaged by TRF1 and TRF2. In contrast to the DNA binding domain of c-Myb, which consists of three imperfect tandem repeats, DNA binding domains of both TRF1 and TRF2 contain only a single Myb repeat. In a DNA complex of c-Myb, both the second and third repeats are closely packed in the major groove of DNA and recognize a specific base sequence cooperatively. RESULTS: The structure of the DNA binding domain of human TRF1 bound to telomeric DNA has been determined by NMR. It consists of three helices, whose architecture is very close to that of three repeats of the c-Myb DNA binding domain. Only the single Myb domain of TRF1 is sufficient for the sequence-specific recognition. The third helix of TRF1 recognizes the TAGGG part in the major groove, and the N-terminal arm interacts with the TT part in the minor groove. CONCLUSIONS: The DNA binding domain of TRF1 can specifically and fully recognize the AGGGTT sequence. It is likely that, in the dimer of TRF1, two DNA binding domains can bind independently in tandem arrays to two binding sites of telomeric DNA that is composed of the repeated AGGGTT motif. Although TRF2 plays an important role in the t loop formation that protects the ends of telomeres, it is likely that the binding mode of TRF2 to double-stranded telomeric DNA is almost identical to that of TRF1.  相似文献   

15.
We have cloned a Chinese hamster chromosome-specific repeated sequence (SatCH5). This satellite is composed of a 33-bp unit organized in two extended tandem arrays. It is localized at the centromere and at the short-arm subtelomere of chromosome 5. Altogether, SatCH5 covers about 1-2 Mb per diploid genome and is not present in other species, including the Syrian hamster and mouse. Since it is known in the Chinese hamster and numerous other vertebrate species that telomeric (TTAGGG)n repeats are localized at the centromeres of several chromosomes, we studied the localization of SatCH5 relative to (TTAGGG)n sequences. Using two-color fluorescence in situ hybridization on stretched chromosomes and on DNA fibers, we have shown that at the centromere of chromosome 5 SatCH5 and the (TTAGGG)n arrays are contiguous. SatCH5 is the first chromosome-specific repetitive sequence located at both the pericentromeric and subtelomeric regions of the same chromosome.  相似文献   

16.
Werner syndrome (WS) is a disorder characterized by features of premature aging and increased cancer that is caused by loss of the RecQ helicase WRN. Telomeres consisting of duplex TTAGGG repeats in humans protect chromosome ends and sustain cellular proliferation. WRN prevents the loss of telomeres replicated from the G-rich strand, which can form secondary G-quadruplex (G4) structures. Here, we dissected WRN roles in the replication of telomeric sequences by examining factors inherent to telomeric repeats, such as G4 DNA, independently from other factors at chromosome ends that can also impede replication. For this we used the supF shuttle vector (SV) mutagenesis assay. We demonstrate that SVs with [TTAGGG]6 sequences are stably replicated in human cells, and that the repeats suppress the frequency of large deletions despite G4 folding potential. WRN depletion increased the supF mutant frequency for both the telomeric and non-telomeric SVs, compared with the control cells, but this increase was much greater (27-fold) for telomeric SVs. The higher SV mutant frequencies in WRN-deficient cells were primarily due to an increase in large sequence deletions and rearrangements. However, WRN depletion caused a more dramatic increase in deletions and rearrangements arising within the telomeric SV (70-fold), compared with non-telomeric SV (8-fold). Our results indicate that WRN prevents large deletions and rearrangements during replication, and that this role is particularly important in templates with telomeric sequence. This provides a possible explanation for increased telomere loss in WS cells.  相似文献   

17.
Mammalian telomeres consist of TTAGGG repeats, telomeric repeat binding factor (TRF), and other proteins, resulting in a protective structure at chromosome ends. Although structure and function of the somatic telomeric complex has been elucidated in some detail, the protein composition of mammalian meiotic telomeres is undetermined. Here we show, by indirect immunofluorescence (IF), that the meiotic telomere complex is similar to its somatic counterpart and contains significant amounts of TRF1, TRF2, and hRap1, while tankyrase, a poly-(ADP-ribose)polymerase at somatic telomeres and nuclear pores, forms small signals at ends of human meiotic chromosome cores. Analysis of rodent spermatocytes reveals Trf1 at mouse, TRF2 at rat, and mammalian Rap1 at meiotic telomeres of both rodents. Moreover, we demonstrate that telomere repositioning during meiotic prophase occurs in sectors of the nuclear envelope that are distinct from nuclear pore-dense areas. The latter form during preleptotene/leptotene and are present during entire prophase I.  相似文献   

18.
N Bosco  T de Lange 《Chromosoma》2012,121(5):465-474
Mouse telomeres have been suggested to resemble common fragile sites (CFS), showing disrupted TTAGGG fluorescent in situ hybridization signals after aphidicolin treatment. This “fragile” telomere phenotype is induced by deletion of TRF1, a shelterin protein that binds telomeric DNA and promotes efficient replication of the telomeric ds[TTAGGG]n tracts. Here we show that the chromosome-internal TTAGGG repeats present at human chromosome 2q14 form an aphidicolin-induced CFS. TRF1 binds to and stabilizes CFS 2q14 but does not affect other CFS, establishing 2q14 as the first CFS controlled by a sequence-specific DNA binding protein. The data show that telomeric DNA is inherently fragile regardless of its genomic position and imply that CFS can be caused by a specific DNA sequence.  相似文献   

19.
The yeast TTAGGG binding factor 1 (Tbf1) was identified and cloned through its ability to interact with vertebrate telomeric repeats in vitro. We show here that a sequence of 60 amino acids located in its C-terminus is critical for DNA binding. This sequence exhibits homologies with Myb repeats and is conserved among five proteins from plants, two of which are known to bind telomeric-related sequences, and two proteins from human, including the telomeric repeat binding factor (TRF) and the predicted C-terminal polypeptide, called orf2, from a yet unknown protein. We demonstrate that the 111 C-terminal residues of TRF and the 64 orf2 residues are able to bind the human telomeric repeats specifically. We propose to call the particular Myb-related motif found in these proteins the 'telobox'. Antibodies directed against the Tbf1 telobox detect two proteins in nuclear and mitotic chromosome extracts from human cell lines. Moreover, both proteins bind specifically to telomeric repeats in vitro. TRF is likely to correspond to one of them. Based on their high affinity for the telomeric repeat, we predict that TRF and orf2 play an important role at human telomeres.  相似文献   

20.
Werner syndrome (WS) is a disorder characterized by features of premature aging and increased cancer that is caused by loss of the RecQ helicase WRN. Telomeres consisting of duplex TTAGGG repeats in humans protect chromosome ends and sustain cellular proliferation. WRN prevents the loss of telomeres replicated from the G-rich strand, which can form secondary G-quadruplex (G4) structures. Here, we dissected WRN roles in the replication of telomeric sequences by examining factors inherent to telomeric repeats, such as G4 DNA, independently from other factors at chromosome ends that can also impede replication. For this we used the supF shuttle vector (SV) mutagenesis assay. We demonstrate that SVs with [TTAGGG]6 sequences are stably replicated in human cells, and that the repeats suppress the frequency of large deletions despite G4 folding potential. WRN depletion increased the supF mutant frequency for both the telomeric and non-telomeric SVs, compared with the control cells, but this increase was much greater (27-fold) for telomeric SVs. The higher SV mutant frequencies in WRN-deficient cells were primarily due to an increase in large sequence deletions and rearrangements. However, WRN depletion caused a more dramatic increase in deletions and rearrangements arising within the telomeric SV (70-fold), compared with non-telomeric SV (8-fold). Our results indicate that WRN prevents large deletions and rearrangements during replication, and that this role is particularly important in templates with telomeric sequence. This provides a possible explanation for increased telomere loss in WS cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号