首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.  相似文献   

2.
Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.  相似文献   

3.
It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades.  相似文献   

4.
Only limited information is available concerning the effects of low-shear modeled microgravity (LSMMG) on cell function and morphology. We examined the behavior of Saccharomyces cerevisiae grown in a high-aspect-ratio vessel, which simulates the low-shear and microgravity conditions encountered in spaceflight. With the exception of a shortened lag phase (90 min less than controls; P < 0.05), yeast cells grown under LSMMG conditions did not differ in growth rate, size, shape, or viability from the controls but did differ in the establishment of polarity as exhibited by aberrant (random) budding compared to the usual bipolar pattern of controls. The aberrant budding was accompanied by an increased tendency of cells to clump, as indicated by aggregates containing five or more cells. We also found significant changes (greater than or equal to twofold) in the expression of genes associated with the establishment of polarity (BUD5), bipolar budding (RAX1, RAX2, and BUD25), and cell separation (DSE1, DSE2, and EGT2). Thus, low-shear environments may significantly alter yeast gene expression and phenotype as well as evolutionary conserved cellular functions such as polarization. The results provide a paradigm for understanding polarity-dependent cell responses to microgravity ranging from pathogenesis in fungi to the immune response in mammals.  相似文献   

5.
Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.  相似文献   

6.
The rotating-wall perfused-vessel (RWPV) bioreactor, used for both microgravity and Earth-based cell science experiments, is characterized in terms of the fluid dynamic and fluid shear stress environment. A numerical model of the flow field is developed and verified with laser Doppler velocimeter measurements. The effects of changes in operating conditions, including rotation rates and fluid perfusion rates, are investigated with the numerical model. The operating conditions typically used for ground-based experiments (equal rotation of the inner and outer cylinders) leads to flow patterns with relatively poor mass distribution characteristics. Approximately 50% of the inlet-perfused fluid bypasses the bulk of the fluid volume and flows to the perfusion exit. For operating conditions typical in microgravity, small differential rotation rates between the inner and outer cylinders lead to greatly improved flow distribution patterns and very low fluid shear stress levels over a large percentage of the fluid volume. Differences in flow patterns for the different operating conditions are explored. Large differences in the hydrodynamic environments for operating conditions typical of true microgravity and ground-based "microgravity simulations" are demonstrated.  相似文献   

7.
8.
Skeletal muscle unweighting: spaceflight and ground-based models.   总被引:10,自引:0,他引:10  
Long-term manned spaceflight requires that flight crews be exposed to extended periods of unweighting of antigravity skeletal muscles. This exposure will result in adaptations in these muscles that have the potential to debilitate crew members on return to increased gravity environments. Therefore, the development of countermeasures to prevent these unwanted adaptations is an important requirement. The limited access to microgravity environments for the purpose of studying muscle adaptation and evaluating countermeasure programs has necessitated the use of ground-based models to conduct both basic and applied muscle physiology research. In this review, the published results from ground-based models of muscle unweighting are presented and compared with the results from related spaceflight research. The models of skeletal muscle unweighting with a sufficient body of literature included bed rest, cast immobilization, and unilateral lower limb suspension. Comparisons of changes in muscle strength and size between these models in the context of the limited results available from spaceflight suggest that each model may be useful for the investigation of certain aspects of the skeletal muscle unweighting that occur in microgravity.  相似文献   

9.
Only limited information is available concerning the effects of low-shear modeled microgravity (LSMMG) on cell function and morphology. We examined the behavior of Saccharomyces cerevisiae grown in a high-aspect-ratio vessel, which simulates the low-shear and microgravity conditions encountered in spaceflight. With the exception of a shortened lag phase (90 min less than controls; P < 0.05), yeast cells grown under LSMMG conditions did not differ in growth rate, size, shape, or viability from the controls but did differ in the establishment of polarity as exhibited by aberrant (random) budding compared to the usual bipolar pattern of controls. The aberrant budding was accompanied by an increased tendency of cells to clump, as indicated by aggregates containing five or more cells. We also found significant changes (greater than or equal to twofold) in the expression of genes associated with the establishment of polarity (BUD5), bipolar budding (RAX1, RAX2, and BUD25), and cell separation (DSE1, DSE2, and EGT2). Thus, low-shear environments may significantly alter yeast gene expression and phenotype as well as evolutionary conserved cellular functions such as polarization. The results provide a paradigm for understanding polarity-dependent cell responses to microgravity ranging from pathogenesis in fungi to the immune response in mammals.  相似文献   

10.
The two main types of mechanical stimuli used in cellular-level bone mechanotransduction studies are substrate strain and flow-induced shear stress. A subset of studies has investigated which of these stimuli induces the primary mechanotransduction effect on bone cells. The shortcomings of these experiments are twofold. First, in some experiments the magnitude of one loading type is able to be quantitatively measured while the other loading mode is only estimated. Second, the two loading modes are compared using different bioreactors, representing different cellular environments and substrates to which the cells are attached. In addition, none of these studies utilized bioreactors which apply controlled magnitudes of substrate strain and flow-induced shear stress differentially and simultaneously. This study presents the design of a multimodal loading device which can apply substrate stretch and fluid flow simultaneously while allowing for real-time cell imaging. The mechanical performance of the bioreactor is validated in this study by correlating the output levels of flow-induced shear stress and substrate strain with the input levels of displacement and displacement rate. The magnitudes of cross-talk loading (i.e. flow-induced strain, and strain-induced fluid flow) are also characterized and shown to be magnitudes lower than physiological levels of loading estimated to occur in bone in vivo.  相似文献   

11.
Vascular endothelial cells (ECs) respond to temporal and spatial characteristics of hemodynamic forces by alterations in their adhesiveness to leukocytes, secretion of vasodilators, and permeability to blood-borne constituents. These physiological and pathophysiological changes are tied to adaptation of cell mechanics and mechanotransduction, the process by which cells convert forces to intracellular biochemical signals. The exact time scales of these mechanical adaptations, however, remain unknown. We used particle-tracking microrheology to study adaptive changes in intracellular mechanics in response to a step change in fluid shear stress, which simulates both rapid temporal and steady features of hemodynamic forces. Results indicate that ECs become significantly more compliant as early as 30 s after a step change in shear stress from 0 to 10 dyn/cm2 followed by recovery of viscoelastic parameters within 4 min of shearing, even though shear stress was maintained. After ECs were sheared for 5 min, return of shear stress to 0 dyn/cm2 in a stepwise manner did not result in any further rheological adaptation. Average vesicle displacements were used to determine time-dependent cell deformation and macrorheological parameters by fitting creep function to a linear viscoelastic liquid model. Characteristic time and magnitude for shear-induced deformation were 3 s and 50 nm, respectively. We conclude that ECs rapidly adapt their mechanical properties in response to shear stress, and we provide the first macrorheological parameters for time-dependent deformations of ECs to a physiological forcing function. Such studies provide insight into pathologies such as atherosclerosis, which may find their origins in EC mechanics. viscoelasticity; atherosclerosis; cell mechanics; particle tracking; mechanotransduction  相似文献   

12.
The response of microbes to changes in the mechanical force of fluid shear has important implications for pathogens, which experience wide fluctuations in fluid shear in vivo during infection. However, the majority of studies have not cultured microbes under physiological fluid shear conditions within a range commonly encountered by microbes during host-pathogen interactions. Here we describe a convenient batch culture biosystem in which (i) the levels of fluid shear force can be varied within physiologically relevant ranges and quantified via mathematical models and (ii) large numbers of cells can be planktonically grown and harvested to examine the effect of fluid shear levels on microbial genomic and phenotypic responses. A quantitative model based on numerical simulations and in situ imaging analysis was developed to calculate the fluid shear imparted by spherical beads of different sizes on bacterial cell cultures grown in a rotating wall vessel (RWV) bioreactor. To demonstrate the application of this model, we subjected cultures of the bacterial pathogen Salmonella enterica serovar Typhimurium to three physiologically-relevant fluid shear ranges during growth in the RVW and demonstrated a progressive relationship between the applied fluid shear and the bacterial genetic and phenotypic responses. By applying this model to different cell types, including other bacterial pathogens, entire classes of genes and proteins involved in cellular interactions may be discovered that have not previously been identified during growth under conventional culture conditions, leading to new targets for vaccine and therapeutic development.  相似文献   

13.
Mechanical stimuli can improve bone function by promoting the proliferation and differentiation of bone cells and osteoblasts. As precursors of osteoblasts, human mesenchymal stem cells (hMSCs) are sensitive to mechanical stimuli. In recent years, fluid shear stress (FSS) has been widely used as a method of mechanical stimulation in bone tissue engineering to induce the osteogenic differentiation of hMSCs. However, the mechanism of this differentiation is not completely clear. Several signaling pathways are involved in the mechanotransduction of hMSCs responding to FSS, such as MAPK, NO/cGMP/PKG and Ca2+ signaling pathway. Here, we briefly review how hMSCs respond to fluid flow stimuli and focus on the signal molecules involved in this mechanotransduction.  相似文献   

14.
Centrifuges are often used in biological studies for 1 x g control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the centrifuge and the geometry of the experiment hardware used these shear forces may contribute as much as 99% to the total force acting on the cells or tissues. The inertial shear force artifact should be dealt with for future experiment hardware development for Shuttle and the International Space Station (ISS) as well as for the interpretation of previous spaceflight and on-ground research data.  相似文献   

15.
As their environments change, microbes experience various threats and stressors, and in the hypercompetitive microbial world, dynamism and the ability to rapidly respond to such changes allow microbes to outcompete their nutrient-seeking neighbors. Viewed in that light, the very difference between microbial life and death depends on effective stress response mechanisms. In addition to the more commonly studied temperature, nutritional, and chemical stressors, research has begun to characterize microbial responses to physical stress, namely low-shear stress. In fact, microbial responses to low-shear modeled microgravity (LSMMG), which emulates the microgravity experienced in space, have been studied quite widely in both prokaryotes and eukaryotes. Interestingly, LSMMG-induced changes in the virulence potential of several Gram-negative enteric bacteria, e.g., an increased enterotoxigenic Escherichia coli-mediated fluid secretion in ligated ileal loops of mice, an increased adherent invasive E. coli-mediated infectivity of Caco-2 cells, an increased Salmonella typhimurium-mediated invasion of both epithelial and macrophage cells, and S. typhimurium hypervirulence phenotype in BALB/c mice when infected by the intraperitoneal route. Although these were some examples where virulence of the bacteria was increased, there are instances where organisms became less virulent under LSMMG, e.g., hypovirulence of Yersinia pestis in cell culture infections and hypovirulence of methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, and Listeria monocytogenes in a Caenorhabditis elegans infection model. In general, a number of LSMMG-exposed bacteria (but not all) seemed better equipped to handle subsequent stressors such as osmotic shock, acid shock, heat shock, and exposure to chemotherapeutics. This mini-review primarily discusses both LSMMG-induced as well as bona fide spaceflight-specific alterations in bacterial virulence potential, demonstrating that pathogens’ responses to low-shear forces vary dramatically. Ultimately, a careful characterization of numerous bacterial pathogens’ responses to low-shear forces is necessary to evaluate a more complete picture of how this physical stress impacts bacterial virulence since a “one-size-fits-all” response is clearly not the case.  相似文献   

16.
17.
18.
19.
Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion with the extracellular matrix and with other bone cells [1]. Deformation of adhesion complexes at the cell membrane ultimately results in alteration of target gene expression. Recently, we reported that focal adhesion kinase (FAK) functions as a part of a mechanosome complex that is required for FSS-induced mechanotransduction in bone cells. This study extends this work to examine the role of a second member of the FAK family of non-receptor protein tyrosine kinases, proline-rich tyrosine kinase 2 (Pyk2), and determine its role during osteoblast mechanotransduction. We use osteoblasts harvested from mice as our model system in this study and compared the contributions of Pyk2 and FAK during FSS induced mechanotransduction in osteoblasts. We exposed Pyk2(+/+) and Pyk2(-/-) primary calvarial osteoblasts to short period of oscillatory fluid flow and analyzed downstream activation of ERK1/2, and expression of c-fos, cyclooxygenase-2 and osteopontin. Unlike FAK, Pyk2 was not required for fluid flow-induced mechanotransduction as there was no significant difference in the response of Pyk2(+/+) and Pyk2(-/-) osteoblasts to short periods of fluid flow (FF). In contrast, and as predicted, FAK(-/-) osteoblasts were unable to respond to FF. These data indicate that FAK and Pyk2 have distinct, non-redundant functions in launching mechanical signals during osteoblast mechanotransduction. Additionally, we compared two methods of generating FF in both cell types, oscillatory pump method and another orbital platform method. We determined that both methods of generating FF induced similar responses in both primary calvarial osteoblasts and immortalized calvarial osteoblasts.  相似文献   

20.
Studies of T lymphocyte activation with mitogenic lectins during spaceflight have shown a dramatic inhibition of activation as measured by DNA synthesis at 72 h, but the mechanism of this inhibition is unknown. We have investigated the progression of cellular events during the first 24 h of activation using both spaceflight microgravity culture and a ground-based model system that relies on the low shear culture environment of a rotating clinostat (clinorotation). Stimulation of human peripheral blood mononuclear cells (PBMCs) with soluble anti-CD3 (Leu4) in clinorotation and in microgravity culture shows a dramatic reduction in surface expression of the receptor for IL-2 (CD25) and CD69. An absence of bulk RNA synthesis in clinorotation indicates that stimulation with soluble Leu4 does not induce transition of T cells from G0 to the G1 stage of the cell cycle. However, internalization of the TCR by T cells and normal levels of IL-1 synthesis by monocytes indicate that intercellular interactions that are required for activation occur during clinorotation. Complementation of TCR-mediated signaling by phorbol ester restores the ability of PBMCs to express CD25 in clinorotation, indicating that a PKC-associated pathway may be compromised under these conditions. Bypassing the TCR by direct activation of intracellular pathways with a combination of phorbol ester and calcium ionophore in clinorotation resulted in full expression of CD25; however, only partial expression of CD25 occurred in microgravity culture. Though stimulation of purified T cells with Bead-Leu4 in microgravity culture resulted in the engagement and internalization of the TCR, the cells still failed to express CD25. When T cells were stimulated with Bead-Leu4 in microgravity culture, they were able to partially express CD69, a receptor that is constitutively stored in intracellular pools and can be expressed in the absence of new gene expression. Our results suggest that the inhibition of T cell proliferative response in microgravity culture is a result of alterations in signaling events within the first few hours of activation, which are required for the expression of important regulatory molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号