首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 9 毫秒
1.
利用T7DNA聚合酶在低温下仍具较高活性的特点,在热变性后低温下进行测序反应,使用该方法对多种PCR产物进行序列分析均取得较好的结果.  相似文献   

2.
Fas-associated protein with death domain (FADD) has been implicated in T lymphocytes, but the nature of FADD-dependent mechanism in early T cell development has not been completely elucidated. In this study, using T-cell specific deletion mice, we observed that FADD deficiency in thymocytes led to increased apoptosis and reduced cell numbers, which may be attributed to the reduction of Glut1 expression and correspondingly decreased glucose uptake. Furthermore, an abnormal transduction of Akt signaling was discovered in FADD−/− thymocytes, which may be responsible for the declined Glut1 expression. Collectively, our results demonstrate the new function of FADD in glucose metabolism and survival of early T cells.  相似文献   

3.
为了建立一种基于芯片的快速鉴别羊肉掺假成分的方法,将不同动物源性成分的引物及反应所需试剂预先冻干固定到空白芯片反应池内,以制备羊肉掺假鉴别快速荧光定量PCR芯片。同时,通过模拟掺假样品(在羊肉中掺入猪肉、鸡肉、鸭肉、鼠肉成分)检测实验,对所得芯片的性能进行了评价。从与ABI7500荧光定量PCR结果对比可知,基于芯片的快速荧光定量PCR检测方法可以准确检测5种动物源性成分,具有较高的准确性及可用性,且其PCR扩增时间较短,操作简单,满足了羊肉掺假快速鉴别的要求。该芯片的研制及快速检测方法的建立将有效的简化羊肉制品掺假检测的步骤、缩短检测时间,且成本较低,仪器便于携带,使现场检测成为可能。研究结果为我国肉类食品安全监管提供了有力保障。  相似文献   

4.
Thermal asymmetric staggered PCR is the most widely used technique to obtain the flanking sequences. However, it has some limitations, including a low rate of positivity, and complex operation. In this study, a improved method of it was made based on suppression-PCR and touchdown PCR. The PCR fragment obtained by the amplification was used directly for sequencing after gel purification. Using this improved method, the positive rate of amplified flanking sequences of the ATMT mutants reached 99%. In addition, the time from DNA extraction to flanking sequence analysis was shortened to 2 days with about 6 dollars each sample.  相似文献   

5.
An iridovirus (tentatively named SIV, sergestid iridovirus) that causes high mortality in the sergestid shrimp, Acetes erythraeus, was found in Madagascar in 2004. Severely affected shrimp exhibit a blue-green opalescence. Histological examination revealed massive cytoplasmic inclusions in the cuticular epithelial cells, connective tissues, ovary and testes. The electron microscopic examination showed paracrystalline arrays of virions at a size of 140nm, suggesting infection with an iridovirus. A pair of PCR primers were selected from the conserved region of the major capsid protein (MCP)-coding sequence among insect iridoviruses and used to amplify a 1.0kb fragment from the infected A. erythraeus. This fragment was cloned, sequenced and found to be highly similar (upto 80% similarity in translated amino acids with an E value of 1e-124) to the MCP of invertebrate iridoviruses. This clone was then labeled with digoxigenin-11-dUTP and hybridized to tissue sections of infected A. erythraeus, which reacted positively to the probe. The reacting tissues included epithelial cells, connective tissues, and the germinal cells; the same cells as those with inclusions. A PCR method was also developed from the MCP coding sequence for detecting SIV.  相似文献   

6.
African swine fever virus (ASFV), a highly contagious virus, can cause diseases with high mortality rates in pigs, making it a pathogen of social and economic significance. ASFV has been reported to show potential long-term survival in living livestock, such as pigs, but also in leftover cooking meat and undercooked pork meat. Hence, it is possible that there could be direct reinfection or secondary infection through feed produced from household food waste and treatment facilities. Many polymerase chain reaction (PCR)-based molecular diagnostic techniques to detect ASFV in clinical swine samples have been reported. However, those with applicability for food waste samples, which contain relatively low viral copy numbers and may contain various unknown inhibitors of PCR, are still lacking. In this study, we developed a conventional PCR-based diagnostic system that can detect ASFV with high sensitivity from food waste sample types. The technique shows a 10–100 times higher limit of detection compared to that of previously reported methods based on conventional PCR and quantitative real-time PCR. It is also capable of amplifying a sequence that is approximately 751 nucleotides, which is advantageous for similarity analysis and genotyping. Moreover, a ASFV-modified positive material different from ASFV that could synthesize 1400 nucleotide amplicons was developed to identify false-positive cases and thus enhance diagnostic accuracy. The method developed herein may be applicable for future ASFV monitoring, identification, and genotyping in food waste samples.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-022-01007-y.  相似文献   

7.
Studies in vivo indicate that IRS2 plays an important role in maintaining functional beta-cell mass. To investigate if IRS2 autonomously affects beta-cells, we have studied proliferation, apoptosis, and beta-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that beta-cell proliferation was significantly increased in rat islets overexpressing IRS2 while IRS1 was less effective. Moreover, proliferation of a beta-cell line, INS-1, was decreased after repression of Irs2 expression using RNA oligonucleotides. Overexpression of IRS2 in human islets significantly decreased apoptosis of beta-cells, induced by 33.3 mM D-glucose. However, IRS2 did not protect cultured rat islets against apoptosis in the presence of 0.5 mM palmitic acid. Overexpression of IRS2 in isolated rat islets significantly increased basal and D-glucose-stimulated insulin secretion as determined in perifusion experiments. Therefore, IRS2 is sufficient to induce proliferation in rat islets and to protect human beta-cells from D-glucose-induced apoptosis. In addition, IRS2 can improve beta-cell function. Our results indicate that IRS2 acts autonomously in beta-cells in maintenance and expansion of functional beta-cell mass in vivo.  相似文献   

8.
Apoptosis is an important mechanism to maintain homeostasis in mammals, and disruption of the apoptosis regulation mechanism triggers a range of diseases, such as cancer, autoimmune diseases, and developmental disorders. The severity of influenza A virus (IAV) infection is also closely related to dysfunction of apoptosis regulation. In the virus infected cells, the functions of various host cellular molecules involved in regulation of induction of apoptosis are modulated by IAV proteins to enable effective virus replication. The modulation of the intracellular signaling pathway inducing apoptosis by the IAV infection also affects extracellular mechanisms controlling apoptosis, and triggers abnormal host responses related to the disease severity of IAV infections. This review focuses on apoptosis related molecules involved in IAV replication and pathogenicity, the strategy of the virus propagation through the regulation of apoptosis is also discussed.  相似文献   

9.
Synthetic alkylphospholipids (ALPs), such as edelfosine, miltefosine, perifosine, erucylphosphocholine and erufosine, represent a relatively new class of structurally related antitumor agents that act on cell membranes rather than on DNA. They selectively target proliferating (tumor) cells, inducing growth arrest and apoptosis, and are potent sensitizers of conventional chemo- and radiotherapy. ALPs easily insert in the outer leaflet of the plasma membrane and cross the membrane via an ATP-dependent CDC50a-containing ‘flippase’ complex (in carcinoma cells), or are internalized by lipid raft-dependent endocytosis (in lymphoma/leukemic cells). ALPs resist catabolic degradation, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. At the same time, stress pathways (e.g. stress-activated protein kinase/JNK) are activated to promote apoptosis. In many preclinical and clinical studies, perifosine was the most effective ALP, mainly because it inhibits Akt activity potently and consistently, also in vivo. This property is successfully exploited clinically in highly malignant tumors, such as multiple myeloma and neuroblastoma, in which a tyrosine kinase receptor/Akt pathway is amplified. In such cases, perifosine therapy is most effective in combination with conventional anticancer regimens or with rapamycin-type mTOR inhibitors, and may overcome resistance to these agents. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

10.
11.
L Pezzoli  ME Sana  P Ferrazzi  M Iascone 《Gene》2012,507(2):165-169
We describe a male patient affected by hypertrophic cardiomyopathy (HCM) with no point mutations in the eight sarcomeric genes most commonly involved in the disease. By multiple ligation-dependent probe amplification (MLPA) we have identified a multi-exons C-terminus deletion in the cardiac myosin binding protein C (MYBPC3) gene. The rearrangement has been confirmed by long PCR and breakpoints have been defined by sequencing. The 3.5kb terminal deletion is mediated by Alu-repeat elements and is predicted to result in haploinsufficiency of MYBPC3. To exclude the presence of other rare pathogenic variants in additional HCM genes, we performed targeted next-generation sequencing (NGS) of 88 cardiomyopathy-associated genes but we did not identify any further mutation. Interestingly, the MYBPC3 multi-exons deletion was detectable by NGS. This finding broadens the range of mutational spectrum observed in HCM, contributing to understanding the genetic basis of the most common inherited cardiovascular disease. Moreover, our data suggest that NGS may represent a new tool to achieve a deeper insight into molecular basis of complex diseases, allowing to detect in a single experiment both point mutations and gene rearrangements.  相似文献   

12.
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers.In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号