首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horizontal gene transfer (HGT) is part of prokaryotic life style and a major factor in evolution. In principle, any combinations of genetic information can be explored via HGT for effects on prokaryotic fitness. HGT mechanisms including transformation, conjugation, transduction, and variations of these plus the role of mobile genetic elements are summarized with emphasis on their potential to translocate foreign DNA. Complementarily, we discuss how foreign DNA can be integrated in recipient cells through homologous recombination (HR), illegitimate recombination (IR), and combinations of both, site-specific recombination, and the reconstitution of plasmids. Integration of foreign DNA by IR is very low, and combinations of IR with HR provide intermediate levels compared to the high frequency of homologous integration. A survey of studies on potential HGT from various transgenic plants indicates very rare transfer of foreign DNA. At the same time, in prokaryotic habitats, genes introduced into transgenic plants are abundant, and natural HGT frequencies are relatively high providing a greater chance for direct transfer instead of via transgenic plants. It is concluded that potential HGT from transgenic plants to prokaryotes is not expected to influence prokaryotic evolution and to have negative effects on human or animal health and the environment.  相似文献   

2.
Horizontal gene transfer (HGT) spreads genetic diversity by moving genes across species boundaries. By rapidly introducing newly evolved genes into existing genomes, HGT circumvents the slow step of ab initio gene creation and accelerates genome innovation. However, HGT can only affect organisms that readily exchange genes (exchange communities). In order to define exchange communities and understand the internal and external environmental factors that regulate HGT, we analyzed approximately 20,000 genes contained in eight free-living prokaryotic genomes. These analyses indicate that HGT occurs among organisms that share similar factors. The most significant are genome size, genome G/C composition, carbon utilization, and oxygen tolerance.  相似文献   

3.
Many gene flow barriers associated with genetic isolation during eukaryotic species divergence, are lacking in prokaryotes. In these organisms the processes associated with horizontal gene transfer (HGT) may provide both the homogenizing force needed for genetic cohesion and the genetic variation essential to speciation. This is because HGT events can broadly be grouped into genetic conversions (where endogenous genetic material are replaced with homologs acquired from external sources) and genetic introductions (where novel genetic material is acquired from external sources). HGT-based genetic conversions therefore causes homogenization, while genetic introductions drive divergence of populations upon fixation of genetic variants. The impact of HGT in different prokaryotic species may vary substantially and can range from very low levels to rampant HGT, producing chimeric groups of isolates. Combined with other evolutionary processes, these varying levels of HGT causes diversity space to be occupied by unique groups that are mostly incomparable in terms of genetic similarity, genomic cohesion and evolutionary age. As a result, the conventional, cut-off based metrics for species delineation are not adequate. Rather, a pluralistic approach to prokaryotic species recognition is required to accommodate the unique evolutionary ages and tendencies, population dynamics, and evolutionary fates of individual prokaryotic species. Following this approach, all prokaryotic species may be regarded as unique and each of their own kind (sui generis). Taxonomic decisions thus require evolutionary information that integrates vertical inheritances with all possible sources of genetic heterogeneity to ultimately produce robust and biologically meaningful classifications.  相似文献   

4.
Horizontal gene transfer (HGT) is a fundamental process in prokaryotic evolution, contributing significantly to diversification and adaptation. HGT is typically facilitated by mobile genetic elements (MGEs), such as conjugative plasmids and phages, which often impose fitness costs on their hosts. However, a considerable number of bacterial genes are involved in defence mechanisms that limit the propagation of MGEs, suggesting they may actively restrict HGT. In our study, we investigated whether defence systems limit HGT by examining the relationship between the HGT rate and the presence of 73 defence systems across 12 bacterial species. We discovered that only six defence systems, three of which were different CRISPR-Cas subtypes, were associated with a reduced gene gain rate at the species evolution scale. Hosts of these defence systems tend to have a smaller pangenome size and fewer phage-related genes compared to genomes without these systems. This suggests that these defence mechanisms inhibit HGT by limiting prophage integration. We hypothesize that the restriction of HGT by defence systems is species-specific and depends on various ecological and genetic factors, including the burden of MGEs and the fitness effect of HGT in bacterial populations.  相似文献   

5.
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.  相似文献   

6.
As a consequence of sequential replacements by clones of higher fitness (periodic selection), bacterial populations would be continually purged of genetic variability, and the fate of selectively neutral alleles in very large populations of bacteria would be similar to that in demes of sexually reproducing organisms with small genetically effective population sizes. The significance of periodic selection in reducing genetic variability in these clonally reproducing species is dependent on the amount of genetic exchange between clones (recombination). In an effort to determine the relationship between the rates of periodic selection, recombination and the genetically effective sizes of bacterial populations, a model for periodic selection and infectious gene exchange has been developed and its properties analyzed. It shows that, for a given periodic selection regime, genetically effective population size increases exponentially with the rate of recombination.—With the parameters of this model in the range anticipated for natural populations of E. coli, the purging effects of periodic selection on genetic variability are significant; individual populations or lineages of this bacterial species would have very small genetically effective population sizes.—Based on this result, some other a priori considerations and a review of the results of epidemiological and genetic variability studies, it is postulated that E. coli is composed of a relatively limited number of geographically widespread and genetically nearly isolated and monomorphic lineages. The implications of these considerations of the genetic structure of E. coli populations of the interpretation of protein variation and the neutral gene hypothesis are discussed.  相似文献   

7.
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.  相似文献   

8.

Background

Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.

Results

Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.

Conclusions

Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.  相似文献   

9.
Horizontal gene transfer (HGT), a process through which genomes acquire genetic materials from distantly related organisms, is believed to be one of the major forces in prokaryotic genome evolution.However, systematic investigation is still scarce to clarify two basic issues about HGT: (1) what types of genes are transferred; and (2) what influence HGT events over the organization and evolution of biological pathways. Genome-scale investigations of these two issues will advance the systematical understanding of HGT in the context of prokaryotic genome evolution. Having investigated 82 genomes, we constructed an HGT database across broad evolutionary timescales. We identified four function categories containing a high proportion of horizontally transferred genes: cell envelope, energy metabolism, regulatory functions, and transport/binding proteins. Such biased function distribution indicates that HGT is not completely random;instead, it is under high selective pressure, required by function restraints in organisms. Furthermore, we mapped the transferred genes onto the connectivity structure map of organism-specific pathways listed in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our results suggest that recruitment of transferred genes into pathways is also selectively constrained because of the tuned interaction between original pathway members. Pathway organization structures still conserve well through evolution even with the recruitment of horizontally transferred genes. Interestingly, in pathways whose organization were significantly affected by HGT events, the operon-like arrangement of transferred genes was found to be prevalent. Such results suggest that operon plays an essential and directional role in the integration of alien genes into pathways.  相似文献   

10.
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.  相似文献   

11.
As the most diverse group of animals on Earth, insects are key organisms in ecosystems. Horizontal gene transfer (HGT) refers to the transfer of genetic material between species by non-reproductive means. HGT is a major evolutionary force in prokaryotic genome evolution, but its importance in different eukaryotic groups, such as insects, has only recently begun to be understood. Genomic data from hundreds of insect species have enabled the detection of large numbers of HGT events and the elucidation of the functions of some of these foreign genes. Although quantification of the extent of HGT in insects broadens our understanding of its role in insect evolution, the scope of its influence and underlying mechanism(s) of its occurrence remain open questions for the field.  相似文献   

12.
Genetic plasticity of prokaryotic microbial communities is largely dependent on the ongoing exchange of genetic determinants by Horizontal Gene Transfer (HGT). HGT events allow beneficial genetic transitions to occur throughout microbial life, thus promoting adaptation to changing environmental conditions. Here, the significance of secreted vesicles in mediating HGT between microorganisms is discussed, while focusing on the benefits gained by vesicle‐mediated gene delivery and its occurrence under different environmental cues. The potential use of secreted DNA‐harboring vesicles as a mechanism of currently unresolved HGT events in eukaryotic microbes is further discussed.  相似文献   

13.
The extent to which prokaryotic evolution has been influenced by horizontal gene transfer (HGT) and therefore might be more of a network than a tree is unclear. Here we use supertree methods to ask whether a definitive prokaryotic phylogenetic tree exists and whether it can be confidently inferred using orthologous genes. We analysed an 11-taxon dataset spanning the deepest divisions of prokaryotic relationships, a 10-taxon dataset spanning the relatively recent gamma-proteobacteria and a 61-taxon dataset spanning both, using species for which complete genomes are available. Congruence among gene trees spanning deep relationships is not better than random. By contrast, a strong, almost perfect phylogenetic signal exists in gamma-proteobacterial genes. Deep-level prokaryotic relationships are difficult to infer because of signal erosion, systematic bias, hidden paralogy and/or HGT. Our results do not preclude levels of HGT that would be inconsistent with the notion of a prokaryotic phylogeny. This approach will help decide the extent to which we can say that there is a prokaryotic phylogeny and where in the phylogeny a cohesive genomic signal exists.  相似文献   

14.
The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus‐specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.  相似文献   

15.
Suchard MA 《Genetics》2005,170(1):419-431
Horizontal gene transfer (HGT) plays a critical role in evolution across all domains of life with important biological and medical implications. I propose a simple class of stochastic models to examine HGT using multiple orthologous gene alignments. The models function in a hierarchical phylogenetic framework. The top level of the hierarchy is based on a random walk process in "tree space" that allows for the development of a joint probabilistic distribution over multiple gene trees and an unknown, but estimable species tree. I consider two general forms of random walks. The first form is derived from the subtree prune and regraft (SPR) operator that mirrors the observed effects that HGT has on inferred trees. The second form is based on walks over complete graphs and offers numerically tractable solutions for an increasing number of taxa. The bottom level of the hierarchy utilizes standard phylogenetic models to reconstruct gene trees given multiple gene alignments conditional on the random walk process. I develop a well-mixing Markov chain Monte Carlo algorithm to fit the models in a Bayesian framework. I demonstrate the flexibility of these stochastic models to test competing ideas about HGT by examining the complexity hypothesis. Using 144 orthologous gene alignments from six prokaryotes previously collected and analyzed, Bayesian model selection finds support for (1) the SPR model over the alternative form, (2) the 16S rRNA reconstruction as the most likely species tree, and (3) increased HGT of operational genes compared to informational genes.  相似文献   

16.
Horizontal genetic transfer (HGT) has played an important role in bacterial evolution at least since the origins of the bacterial divisions, and HGT still facilitates the origins of bacterial diversity, including diversity based on antibiotic resistance. Adaptive HGT is aided by unique features of genetic exchange in bacteria such as the promiscuity of genetic exchange and the shortness of segments transferred. Genetic exchange rates are limited by the genetic and ecological similarity of organisms. Adaptive transfer of genes is limited to those that can be transferred as a functional unit, provide a niche-transcending adaptation, and are compatible with the architecture and physiology of other organisms. Horizontally transferred adaptations may bring about fitness costs, and natural selection may ameliorate these costs. The origins of ecological diversity can be analyzed by comparing the genomes of recently divergent, ecologically distinct populations, which can be discovered as sequence clusters. Such genome comparisons demonstrate the importance of HGT in ecological diversification. Newly divergent populations cannot be discovered as sequence clusters when their ecological differences are coded by plasmids, as is often the case for antibiotic resistance; the discovery of such populations requires a screen for plasmid-coded functions. This paper reviews the features of bacterial genetics that allow HGT, the similarities between organisms that foster HGT between them, the limits to the kinds of adaptations that can be transferred, and amelioration of fitness costs associated with HGT; the paper also reviews approaches to discover the origins of new, ecologically distinct bacterial populations and the role that HGT plays in their founding.  相似文献   

17.
Horizontal gene transfer (HGT) can create diversity in the genetic repertoire of a lineage. Successful gene transfer likely occurs more frequently between more closely related organisms, leading to the formation of higher-level exchange groups that in some respects are comparable to single-species populations. Genes that appear fixed in a single species can be replaced through distant homologs or iso-functional analogs acquired through HGT. These genes may originate from other species or they may be acquired by an individual strain from the species pan-genome. Because of their similarity to alleles in a population, we label these gene variants that are exchanged between related species as homeoalleles. In a case study, we show that biased gene transfer plays an important role in the evolution of aminoacyl-tRNA synthetases (aaRS). Many microorganisms make use of these genes against naturally occurring antibiotics. We suggest that the resistance against naturally occurring antibiotics is the likely driving force behind the frequent switching between divergent aaRS types and the reason for the maintenance of these homeoalleles in higher-level exchange groups. Resistance to naturally occurring antibiotics may lead to the maintenance of different types of aminoacyl-tRNA synthetases in Bacteria through gene transfer.  相似文献   

18.
19.
Horizontal gene transfer (HGT) plays a key role in the evolution of bacterial pathogens. The exchange of genetic material supplies prokaryotes with several fitness traits enhancing their adaptive response to environmental changes. Pathogenicity islands (PAIs) represent an important and in most cases already immobilized subset of the different vehicles for HGT. Encoding several virulence factors PAls represent a major contribution to bacterial pathogenicity. Nonetheless, the transfer mechanisms of PAIs still remain elusive. We summarise the currently available data regarding the major ways of genetic mobilisation with a focus on the transfer of the Yersinia High-Pathogenicity Island (HPI).  相似文献   

20.

Background  

Metabolic networks are responsible for many essential cellular processes, and exhibit a high level of evolutionary conservation from bacteria to eukaryotes. If genes encoding metabolic enzymes are horizontally transferred and are advantageous, they are likely to become fixed. Horizontal gene transfer (HGT) has played a key role in prokaryotic evolution and its importance in eukaryotes is increasingly evident. High levels of endosymbiotic gene transfer (EGT) accompanied the establishment of plastids and mitochondria, and more recent events have allowed further acquisition of bacterial genes. Here, we present the first comprehensive multi-species analysis of E/HGT of genes encoding metabolic enzymes from bacteria to unicellular eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号