共查询到20条相似文献,搜索用时 15 毫秒
1.
Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity 总被引:1,自引:0,他引:1
Munirathinam Gnanasekar 《Biochemical and biophysical research communications》2009,386(2):333-337
Translationally controlled tumor protein (TCTP) is often designated as a stress-related protein because of its highly regulated expression in stress conditions. Following a thermal shock, TCTP expression is highly upregulated in a variety of cells. However, at present it is not known whether this upregulation has any cell protective function similar to other heat shock proteins. In this study human TCTP (HuTCTP) and a TCTP homolog (SmTCTP) from Schistosoma mansoni were evaluated for heat shock protein-like function and molecular chaperone activity. Our results show that similar to other molecular chaperones, both human and parasite TCTPs can bind to a variety of denatured proteins and protect them from the harmful effects of thermal shock. An important observation was the ability of both HuTCTP and SmTCTP to bind to native protein and protect them from thermal denaturation. Over expression of TCTP in bacterial cells protected them from heat shock-induced death. These findings suggest that TCTP may belong to a novel small molecular weight heat shock protein. 相似文献
2.
3.
Ralf Heermann Arnim Weber Bettina Mayer Melanie Ott Elisabeth Hauser Torsten Pirch Kirsten Jung 《Journal of molecular biology》2009,386(1):134-148
The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K+-transport system KdpFABC in response to K+ limitation or salt stress. Under K+ limiting conditions the Kdp system restores the intracellular K+ concentration, while in response to salt stress K+ is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K+, so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD→KdpE→DNA) resulting in phosphorylation of KdpE at a K+ concentration that would otherwise almost prevent phosphorylation. In agreement, in a ΔuspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K+ limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE∼P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins. 相似文献
4.
5.
基于表面等离子共振技术的配体垂钓技术能在蛋白质组水平上研究蛋白质的相互作用与功能,提供控制细胞功能的新靶标.其通过将受体固定在芯片表面,当被检测样品流过芯片表面时,配体与受体相结合, 实现俘获未知的相互作用的伙伴蛋白或复合体,并结合质谱技术鉴定出未知蛋白及其序列. 相似文献
6.
Manoj Munde Raja Nhili Marie-Hélène David-Cordonnier Chad E. Stephens Adalgisa Batista-Parra W. David Wilson 《Journal of molecular biology》2010,402(5):847-864
With the increasing number and variations of genome sequences available, control of gene expression with synthetic, cell-permeable molecules is within reach. The variety of sequence-specific binding agents is, however, still quite limited. Many minor groove binding agents selectivity recognize AT over GC sequences but have less ability to distinguish among different AT sequences. The goal with this article is to develop compounds that can bind selectively to different AT sequences. A number of studies indicate that AATT and TTAA sequences have significantly different physical and interaction properties and different requirements for minor groove recognition. Although it has been difficult to get minor groove binding at TTAA, DB293, a phenyl-furan-benzimidazole diamidine, was found to bind as a strong, cooperative dimer at TTAA but with no selectivity over AATT. In order to improve selectivity, we made modifications to each unit of DB293. Binding affinities and stoichiometries obtained from biosensor-surface plasmon resonance experiments show that DB1003, a furan-furan-benzimidazole diamidine, binds strongly to TTAA as a dimer and has selectivity (KTTAA/KAATT = 6). CD and DNase I footprinting studies confirmed the preference of this compound for TTAA. In summary, (i) a favorable stacking surface provided by the pi system, (ii) H-bond donors to interact with TA base pairs at the floor of the groove provided by a benzimidazole (or indole) -NH and amidines, and (iii) appropriate curvature of the dimer complex to match the curvature of the minor groove play important roles in differentiating the TTAA and AATT minor grooves. 相似文献
7.
Yohei Mukai Hiroko Shibata Yasuo Yoshioka Yasuhiro Abe Madoka Taniai Shinji Ikemizu Shin-ichi Tsunoda Yuriko Yamagata 《Journal of molecular biology》2009,385(4):1221-1229
Tumor necrosis factor (TNF) is an important cytokine that suppresses carcinogenesis and excludes infectious pathogens to maintain homeostasis. TNF activates its two receptors [TNF receptor (TNFR) 1 and TNFR2], but the contribution of each receptor to various host defense functions and immunologic surveillance is not yet clear. Here, we used phage display techniques to generate receptor-selective TNF mutants that activate only one TNFR. These TNF mutants will be useful in the functional analysis of TNFR.Six amino acids in the receptor binding interface (near TNF residues 30, 80, and 140) were randomly mutated by polymerase chain reaction. Two phage libraries comprising over 5 million TNF mutants were constructed. By selecting the mutants without affinity for TNFR1 or TNFR2, we successfully isolated 4 TNFR2-selective candidates and 16 TNFR1-selective candidates, respectively. The TNFR1-selective candidates were highly mutated near residue 30, whereas TNFR2-selective candidates were highly mutated near residue 140, although both had conserved sequences near residues 140 and 30, respectively. This finding suggested that the phage display technique was suitable for identifying important regions for the TNF interaction with TNFR1 and TNFR2. Purified clone R1-6, a TNFR1-selective candidate, remained fully bioactive and had full affinity for TNFR1 without activating TNFR2, indicating the usefulness of the R1-6 TNF mutant in analyzing TNFR1 receptor function.To further elucidate the receptor selectivity of R1-6, we examined the structure of R1-6 by X-ray crystallography. The results suggested that R31A and R32G mutations strongly influenced electrostatic interaction with TNFR2, and that L29K mutation contributed to the binding of R1-6 to TNFR1. This phage display technique can be used to efficiently construct functional mutants for analysis of the TNF structure-function relationship, which might facilitate in silico drug design based on receptor selectivity. 相似文献
8.
Florian Malard Nadine Assrir Mouad Alami Samir Messaoudi Ewen Lescop Tâp Ha-Duong 《Journal of molecular biology》2018,430(11):1621-1639
The translationally controlled tumor protein (TCTP) is a multifunctional protein that may interact with many other biomolecules, including itself. The experimental determinations of TCTP structure revealed a folded core domain and an intrinsically disordered region, which includes the first highly conserved TCTP signature, but whose role in the protein functions remains to be elucidated. In this work, we combined NMR experiments and MD simulations to characterize the conformational ensemble of the TCTP intrinsically disordered loop, in the presence or not of calcium ions and with or without the phosphorylation of Ser46 and Ser64. Our results show that these changes in the TCTP electrostatic conditions induce significant shifts of its conformational ensemble toward structures more or less extended in which the disordered loop is pulled away or folded against the core domain. Particularly, these conditions impact the transient contacts between the two highly conserved signatures of the protein. Moreover, both experimental and theoretical data show that the interface of the non-covalent TCTP dimerization involves its second signature which suggests that this region might be involved in protein–protein interaction. We also show that calcium hampers the formation of TCTP dimers, likely by favoring the competitive binding of the disordered loop to the dimerization interface. All together, we propose that the TCTP intrinsically disordered region is involved in remodeling the core domain surface to modulate its accessibility to its partners in response to a variety of cellular conditions. 相似文献
9.
Olga Kostareva Svetlana Tishchenko Ekaterina Nikonova Vladislav Kljashtorny Natalia Nevskaya Alexei Nikulin Anna Sycheva Sergei Moshkovskii Wolfgang Piendl Maria Garber Stanislav Nikonov 《Journal of molecular recognition : JMR》2011,24(4):524-532
The formation of a specific and stable complex between two (macro)molecules implies complementary contact surface regions. We used ribosomal protein L1, which specifically binds a target site on 23S rRNA, to study the influence of surface modifications on the protein?RNA affinity. The threonine residue in the universally conserved triad Thr?Met?Gly significant for RNA recognition and binding was substituted by phenylalanine, valine and alanine, respectively. The crystal structure of the mutant Thr217Val of the isolated domain I of L1 from Thermus thermophilus (TthL1) was determined. This structure and that of two other mutants, which had been determined earlier, were analysed and compared with the structure of the wild type L1 proteins. The influence of structural changes in the mutant L1 proteins on their affinity for the specific 23S rRNA fragment was tested by kinetic experiments using surface plasmon resonance (SPR) biosensor analysis. Association rate constants undergo minor changes, whereas dissociation rate constants displayed significantly higher values in comparison with that for the wild type protein. The analysed L1 mutants recognize the specific RNA target site, but the mutant L1?23S rRNA complexes are less stable compared to the wild type complexes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
Upon completion of synthesis of an Okazaki fragment, the lagging strand replicase must recycle to the next primer at the replication fork in under 0.1 s to sustain the physiological rate of DNA synthesis. We tested the collision model that posits that cycling is triggered by the polymerase encountering the 5′-end of the preceding Okazaki fragment. Probing with surface plasmon resonance, DNA polymerase III holoenzyme initiation complexes were formed on an immobilized gapped template. Initiation complexes exhibit a half-life of dissociation of approximately 15 min. Reduction in gap size to 1 nt increased the rate of dissociation 2.5-fold, and complete filling of the gap increased the off-rate an additional 3-fold (t1/2 ∼ 2 min). An exogenous primed template and ATP accelerated dissociation an additional 4-fold in a reaction that required complete filling of the gap. Neither a 5′-triphosphate nor a 5′-RNA terminated oligonucleotide downstream of the polymerase accelerated dissociation further. Thus, the rate of polymerase release upon gap completion and collision with a downstream Okazaki fragment is 1000-fold too slow to support an adequate rate of cycling and likely provides a backup mechanism to enable polymerase release when the other cycling signals are absent. Kinetic measurements indicate that addition of the last nucleotide to fill the gap is not the rate-limiting step for polymerase release and cycling. Modest (approximately 7 nt) strand displacement is observed after the gap between model Okazaki fragments is filled. To determine the identity of the protein that senses gap filling to modulate affinity of the replicase for the template, we performed photo-cross-linking experiments with highly reactive and non-chemoselective diazirines. Only the α subunit cross-linked, indicating that it serves as the sensor. 相似文献
11.
Kuhfahl S Hauburger A Thieme T Groppe J Ihling C Tomic S Schutkowski M Sinz A Schwarz E 《Biochemical and biophysical research communications》2011,408(2):300-305
Proregions of bone morphogenetic proteins (BMPs) fulfill important biological functions as intramolecular chaperones and for extracellular targeting of the mature signal ligand. Knowledge of the structures of the proregions would contribute to a more comprehensive picture of the biological activities of the pro-forms of BMP growth factors. In this study, a protease resistant core domain of the proregions of three BMPs was identified. For a more detailed analysis, the core domain of the BMP-2 proregion was recombinantly produced. Unfolding/refolding experiments and spectroscopic analyses proved that the core domain can be obtained as a folded entity. Binding of the core domain to the mature growth factor was demonstrated by SPR. Via peptide microarray analysis, residues within the core fragment could be identified that engage in binding to the dimeric, mature domain. Our study reveals that diverse members of the BMP family share a common, independently folding core domain within the large proregions peculiar to TGF-β superfamily members that may serve as a scaffold for folding and assembly of the dimeric proprotein complexes. 相似文献
12.
Yvonne Kienast Ute Jucknischke Stefan Scheiblich Martina Thier Mariana de Wouters Alexander Haas Christian Lehmann Verena Brand Dirk Bernicke Konrad Honold Stefan Lorenz 《The Journal of biological chemistry》2016,291(7):3395-3410
By non-covalent association after proteolytic cleavage, the pro-domains modulate the activities of the mature growth factor domains across the transforming growth factor-β family. In the case of bone morphogenic protein 9 (BMP9), however, the pro-domains do not inhibit the bioactivity of the growth factor, and the BMP9·pro-domain complexes have equivalent biological activities as the BMP9 mature ligand dimers. By using real-time surface plasmon resonance, we could demonstrate that either binding of pro-domain-complexed BMP9 to type I receptor activin receptor-like kinase 1 (ALK1), type II receptors, co-receptor endoglin, or to mature BMP9 domain targeting antibodies leads to immediate and complete displacement of the pro-domains from the complex. Vice versa, pro-domain binding by an anti-pro-domain antibody results in release of the mature BMP9 growth factor. Based on these findings, we adjusted ELISA assays to measure the protein levels of different BMP9 variants. Although mature BMP9 and inactive precursor BMP9 protein were directly detectable by ELISA, BMP9·pro-domain complex could only be measured indirectly as dissociated fragments due to displacement of mature growth factor and pro-domains after antibody binding. Our studies provide a model in which BMP9 can be readily activated upon getting into contact with its receptors. This increases the understanding of the underlying biology of BMP9 activation and also provides guidance for ELISA development for the detection of circulating BMP9 variants. 相似文献
13.
Ai Minomo Yu Ishima Victor T.G. Chuang Yoshiaki Suwa Ulrich Kragh-Hansen Toru Narisoko Hiroshi Morioka Toru Maruyama Masaki Otagiri 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
4Z,15Z-bilirubin-IXα (BR), an endogenous toxic compound that is sparingly soluble in water, binds human serum albumin (HSA) with high affinity in a flexible manner. Our previous findings suggest that both Lys195 and Lys199 in subdomain IIA are important for the high-affinity binding of BR, and especially Lys199 in stand-alone domain II plays a prominent role in the renal elimination of BR. Our hypothesis is that HSA-domain II with high BR binding would be a useful therapeutic agent to treat hyperbilirubinemia in patients with impaired liver function.Methods
Unbound BR concentrations were determined using a modified HRP assay. To evaluate the effect of pan3_3-13 domain II mutant in promoting urinary BR excretion, the serum concentration and urinary excretion amount of BR were determined using bile duct ligation mice.Results
After three or six rounds of panning, pan3_3-13 and pan6_4 were found to have a significantly higher affinity for BR than wild-type domain II. Administration of pan3_3-13 significantly reduced serum BR level and increased its urinary excretion in the disease model mice as compared to wild-type domain II treatment.Conclusions
These results suggest that pan3_3-13 has great potential as a therapeutic agent that promotes urinary BR excretion in hyperbilirubinemia.General significance
This is the first study to be applied to other HSA bound toxic compounds that are responsible for the progression of disease, thereby paving the way for the development of non-invasive and cost effective blood purification treatment methods. 相似文献14.
小麦TCTP基因的克隆及白粉菌诱导下的表达 总被引:1,自引:1,他引:0
翻译控制肿瘤蛋白(translationally controlled tumor protein,TCTP)最初在鼠肿瘤细胞中被发现,研究表明TCTP广泛存在于动植物细胞中,并具有多种生物学功能。本研究用RT PCR和RACE技术在抗白粉病栽培小麦Brock中克隆了一个TCTP基因,该基因全长766 bp,推测编码一个168个氨基酸的多肽。ScanProsite分析表明,该多肽链具有2个TCTP特征结构区(TCTP1和TCTP2)和7个可能的功能位点。表达半定量分析发现,该基因受华北地区流行的优势小种15号白粉菌诱导,且随着诱导时间的增加其表达量增加。本研究将可能在小麦白粉病抗性研究领域开辟新的研究思路。 相似文献
15.
Naghmeh S. Sarraf Jason Baardsnes Maureen O'Connor-McCourt Irena Ekiel 《Journal of molecular biology》2010,398(1):111-320
CbpA, one of the Escherichia coli DnaJ homologues, acts as a co-chaperone in the DnaK chaperone system. Despite its extensive similarity in domain structure and function to DnaJ, CbpA has a unique and specific regulatory mechanism mediated through the small protein CbpM. Both CbpA and CbpM are highly conserved in bacteria. Earlier studies showed that CbpM interacts with the N-terminal J-domain of CbpA inhibiting its co-chaperone activity but the structural basis of this interaction is not known. Here, we have combined NMR spectroscopy, site-directed mutagenesis and surface plasmon resonance to characterize the CbpA/CbpM interaction at the molecular level. We have determined the solution structure of the CbpA J-domain and mapped the residues that are perturbed upon CbpM binding. The NMR data defined a broad region on helices α2 and α3 as involved in the interactions. Site-directed mutagenesis has been used to further delineate the CbpA J-domain/CbpM interface. We show that the binding sites of CbpM and DnaK on CbpA J-domain overlap, which suggests a competition between DnaK and CbpM for binding to CbpA as a mechanism for CbpA regulation. This study also provides the explanation for the specificity of CbpM for CbpA versus DnaJ, by identifying the key residues for differential binding. 相似文献
16.
Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin alpha, importin beta, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild-type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin alpha, importin beta, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions. 相似文献
17.
Soh Yamamoto Kensuke Owari Nobuaki Ogawa Kumiko Tamaki Atsushi Komatsuda Ken-ichi Sawada Hideaki Itoh 《FEBS letters》2010,584(4):645-632
We previously reported that gentamicin (GM) specifically binds to heat-shock protein with subunit molecular masses of 70 kDa (HSP70). In the present study, we have investigated the effects of GM binding on HSP70-assisted protein folding in vitro. The C-terminal, and not the N-terminal of HSP70 was found to bind to GM. GM significantly suppressed refolding of firefly luciferase in the presence of HSP70 and HSP40, although the ATPase activity of HSP70 was unaffected by GM. A surface plasmon resonance analysis revealed that GM specifically interferes with the binding of HSP70 to a model peptide that mimics the exposed hydrophobic surface of the folding intermediates. These results indicated that GM inhibits the chaperone activity of HSP70 and may suppress protein folding via inhibition of HSP70 in vivo.
Structured summary
MINT-7384283: HSP40 (uniprotkb:P25685) binds (MI:0407) to HSP70 (uniprotkb:P34930) by surface plasmon resonance (MI:0107)MINT-7384430: RNaseA (uniprotkb:P61823) binds (MI:0407) to HSP70 (uniprotkb:P34930) by surface plasmon resonance (MI:0107) 相似文献18.
In Gram-negative bacteria, trans-envelope efflux pumps have periplasmic membrane fusion proteins (MFPs) as essential components. MFPs act as mediators between outer membrane factors (OMFs) and inner membrane factors (IMFs). In this study, structure–function relations of the ATP-driven glycolipid efflux pump DevBCA-TolC/HgdD from the cyanobacterium Anabaena sp. PCC 7120 were analyzed. The binding of the MFP DevB to the OMF TolC absolutely required the respective tip-regions. The interaction of DevB with the IMF DevAC mainly involved the β-barrel and the lipoyl domain. Efficient binding to DevAC and TolC, substrate recognition and export activity by DevAC were dependent on stable DevB hexamers. 相似文献
19.
Characterization of ligand-binding properties of the human BMP type II receptor extracellular domain 总被引:1,自引:0,他引:1
ActR-IIA, ActR-IIB, and BMPR-II are low-affinity type II receptors that bind bone morphogenetic proteins (BMPs) in the same overall manner. The binding of BMPs by ActR-IIs has been analyzed structurally and functionally, but no detailed analysis of BMPR-II has been reported. The objective of this study was to determine ligand-binding epitopes and specificity determinants in two regions, the hydrophobic patch and the A-loop of the BMPR-II extracellular domain (ECD). A series of alanine-substituted variants was generated using a recently published X-ray structure of the unliganded form of the ovine BMPR-II ECD as a guide. These variants were characterized using one-dimensional NMR and functional activity assays with BMP-2, BMP-7 and GDF-5 as ligands. The results showed that alanine substitutions of conserved residues W85 and Y113 within the hydrophobic patch of the ECD differentially perturbed BMP ligand binding without disrupting receptor folding, suggesting that they are critical determinants for ligand binding and ligand specificity. Our results further revealed that the nonconserved residue L69 in the hydrophobic patch contributes to ligand-binding activity and specificity. Mutations of several residues within the A-loop resulted in minimal effects on the binding of the different BMP ligands. Overall, these observations identify several amino acid residues that play different roles in BMPR-II and ActR-II and thereby enable BMPR-II and ActR-IIs to bind different subclasses of BMP ligands. 相似文献
20.
Previously, we have demonstrated that the tyrosine phosphorylated hepatocyte growth factor receptor (Met) binds to the c-Cbl phosphotyrosine-recognition, tyrosine kinase binding (TKB) domain in a reverse orientation compared to other c-Cbl binding partners. A Met peptide with the DpYR motif changed to RpYD (MetRD) retains a similar TKB binding affinity as the native Met peptide. However, the TKB: MetRD complex crystal structure reveals a complete reversal of the binding orientation. Collated data indicates that both binding and orientation is dictated by the phosphorylated tyrosine and an adjacent arginine forming intra-peptide hydrogen bonds and aligning unidirectionally with complementary charges in the phosphotyrosine binding pocket of c-Cbl.