首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A substantial portion of particulate organic matter (POM) is stored in the sediment of rivers and streams. Leaf litter breakdown as an ecosystem process mediated by microorganisms and invertebrates is well documented in surface waters. In contrast, this process and especially the implication for invertebrates in subsurface environments remain poorly studied. 2. In the hyporheic zone, sediment grain size distribution exerts a strong influence on hydrodynamics and habitability for invertebrates. We expected that the influence of shredders on organic matter breakdown in river sediments would be influenced strongly by the physical structure of the interstitial habitat. 3. To test this hypothesis, the influence of gammarids (shredders commonly encountered in the hyporheos) on degradation of buried leaf litter was measured in experimental systems (slow filtration columns). We manipulated the structure of the sedimentary habitat by addition of sand to a gravel‐based sediment column to reproduce three conditions of accessible pore volume. Ten gammarids were introduced in columns together with litter bags containing alder leaves at a depth of 8 cm in sediment. Leaves were collected after 28 days to determine leaf mass loss and associated microbial activity (fungal biomass, bacterial abundance and glucosidase, xylosidase and aminopeptidase activities). 4. As predicted, the consumption of buried leaf litter by shredders was strongly influenced by the sediment structure. Effective porosity of 35% and 25% allowed the access to buried leaf litter for gammarids, whereas a lower porosity (12%) did not. As a consequence, leaf litter breakdown rates in columns with 35% and 25% effective porosity were twice as high as in the 12% condition. Microbial activity was poorly stimulated by gammarids, suggesting a low microbial contribution to leaf mass loss and a direct effect of gammarids through feeding activity. 5. Our results show that breakdown of POM in subsurface waters depends on the accessibility of food patches to shredders.  相似文献   

2.
3.
Synopsis Analysis of frozen cores of gravel surrounding the egg pockets of chum salmon, Oncorhynchus keta, collected in the fall revealed that spawning activity by females purged about 75 % of the fine sediments from the stream bed. The egg pocket was one of four distinct vertical strata detected in the cores. There was an undisturbed layer below the egg pocket, and separate bridge and cover strata above the egg pocket, all defined by different particle size distributions. However, by spring most of the egg pockets had been infiltrated with fine sediment and the particle size distribution approached background levels. The most likely physical factors responsible for these results were: (1) intrusion of fine sediments through the cleaned surface gravel, (2) lateral subsurface migration of fine sediment into interstitial voids, (3) scour of the surface gravel and subsequent deposition of a sand rich bedload, and (4) superimposed spawning activity of other fish, causing disturbance of the cleaned surface gravel and exposing the egg pocket to intrusion of fine particles. We conclude that, while female salmon substantially affect the physical environment of their embryos, subsequent sediment transport processes and fine bedload flux tend to return this environment to pre-spawning conditions.  相似文献   

4.
1. Discharge patterns of streams and rivers may be substantially affected by changes in water management, land use, or climate. Such hydrological alterations are likely to influence biotic processes, including overall ecosystem metabolism (photosynthesis and respiration). One regulator of aquatic ecosystem metabolism directly tied to hydrology is movement of bed sediments. 2. We propose that ecosystem metabolism can be reconstructed or predicted for any suite of hydrological conditions through the use of quantitative relationships between discharge, bed movement and metabolism. We tested this concept on a plains reach of the South Platte River in Colorado. 3. Movement of bed sediments was predicted from river discharge and the Shields stress, a ratio of velocity‐induced stress to sediment grain size. Quantitative relationships were established empirically between metabolic response to bed movement and recovery from bed movement, thus linking metabolism to hydrology. 4. The linkage of metabolism to hydrology allowed us to reconstruct daily photosynthesis and respiration over the 70‐year period for which discharge is known at our study site on the South Platte River. The reconstruction shows major ecological change caused by hydrological manipulation: the river has lost two‐thirds of its photosynthetic potential, and the ratio of photosynthesis to respiration is now much lower than it was prior to 1960. 5. The same approach could be used to anticipate ecological responses to proposed hydrological manipulations, to quantify benefits of hydrological restoration, or to illustrate potential effects of change in climate or land use on flowing‐water ecosystems.  相似文献   

5.
Summary 1. We studied the relative contributions of the magnitude and direction of vertical hydrological exchange, subsurface sediment composition and interstitial physicochemistry in determining the distribution of hyporheic invertebrates in the Kye Burn, a fourth order gravel‐bed stream in New Zealand. 2. In winter 2000 and summer 2001, we measured vertical hydrological gradient (VHG), dissolved oxygen, water temperature and water chemistry using mini‐piezometers, each installed in a different upwelling or downwelling zone. Next to every piezometer, a freeze core sample was taken to quantify the sediment, particulate organic matter and invertebrates. 3. Dissolved oxygen concentration at 25 cm was high on both occasions (>9 mg L?1) but was higher in winter than summer. Interstitial water temperature was higher in down than upwellings and was substantially higher in summer than winter. Other features of the subsurface sediments and interstitial nitrate–nitrite concentrations were similar on both occasions and in up and downwellings. Interstitial ammonium and soluble reactive phosphorous concentrations were higher in winter than summer and ammonium was higher in up than downwelling areas. 4. The proportion of fine sediment (63 μm–1 mm), sediment heterogeneity and VHG accounted for the greatest proportion of variance in invertebrate distributions in both summer and winter. 5. The hyporheos was numerically dominated by early instar leptophlebiid mayfly nymphs and asellotan isopods. Water mites were a taxonomically diverse group with 13 genera. Taxonomic diversity (Shannon–Weaver), but not taxon richness, was higher in upwelling areas, reflecting lower numerical dominance by a few taxa in these locations. 6. Sediment composition (particularly the amount of fine sediments) and vertical hydrological exchange determined the composition and distribution of the hyporheos. Patchiness in these factors is important in planning sampling regimes or field manipulations in the hyporheic zone.  相似文献   

6.
Water chemistry and community assemblages of surface and interstitial invertebrates were studied at seven sues on the French Rivers Rhône and Am at surface and at 50 cm depth into the bed sediments Chemical factors allowed differentiation of surface water from groundwater and detection of water exchanges defining clear downwelling and upwelling zones At some sites, interstitial water showed both surface and phreatic conditions, characterizing the underflows of the Rhone or of the Am In the interstitial area, most taxa showed no significant correlations with water chemistry Some epigean and hypogean fauna showed correlations with certain factors Clear relationships appeared between the water exchanges and the distribution of surface and interstitial faunas In interstitial samples, epigean and some hypogean species characterized the downwelling zones while others seemed to be strictly linked to the upwelling zones In surface samples, the presence of hypogean species was associated with regions of groundwater upwelling  相似文献   

7.
8.
A mathematical model of the size exclusion chromatography (SEC) process in chromatographic columns has been developed. It considers the following three mass transfer processes in the SEC column: axial dispersion in the bulk‐fluid phase, interfacial film mass‐transfer between the stationary and mobile phases, and diffusion of solutes within the macro pores of the packing particles. Differential equations of the process model were solved by the finite difference method. Characteristics of the column and the packing particles (bed void volume fraction, particle porosity, accessible particle porosity) were obtained experimentally, as well as retention times of different molecules with known molecular weights. Experiments were performed with two different columns containing two different packing materials, Superdex 75 HR 10/30 and BioSep SEC S2000, respectively. The model has been validated by comparing theoretical and experimental retention times for the different columns.  相似文献   

9.
The bed expansion characteristics of a fluidized bed containing bacterial granules have been studied. These biogranules were obtained from an anaerobic hybrid reactor, which uses biogranules (without carrier particle) in fluidized condition. The settling velocity study of biogranules has shown that the drag coefficient of biogranule is greater than that of the rigid particle at the same Reynolds number. A new correlation based on this finding has been developed. The bed expansion study has demonstrated that a linear relationship exists between the natural logarithm of bed porosity and the natural logarithm of upflow superficial liquid velocity for the bed containing either a particular fraction of biogranule size or biogranules with wide size distribution. For a fluidized bed having a particular granule size, the bed porosity, and liquid superficial velocity could be related by the classic equation suggested by Richardson and Zaki (1954). The characteristic parameter of this correlation, the slope of the line n, has been related with Reynolds number. The intercept of the line gave a smaller value than the unhindered settling velocity of the particle. For fluidized bed having wide size distribution, the characteristic parameter n could not be related to Reynolds number. But the correlation suggested for single biogranule size has been found to predict n value with an average error of 2.3%.  相似文献   

10.
The relationship between median grain size of sediments and the abundance in the wild of green algal mats (Ulva prolifera) on the intertidal flats of Muan, Korea, were investigated. The impact of substratum particle size on the growth and survival of germlings was examined in the laboratory. In the wild, the average annual density of algal mats was 7,950 ind m−2. The algal mats mainly occurred in sands and exhibited patchy distribution. Statistical analysis indicates significant spatial analysis differences and a significant relationship between density and the ratio of sands to silts, suggesting that the distribution and density of this species were related to particle size. In laboratory experiments, the survival rate of U. prolifera germlings was the lowest value (22%) on sediments with a median grain size of 63–125 μm. Laboratory experiments have generally shown a positive relationship between attachment or survival of the alga and substratum particles size. Our laboratory results indicate a clear link between germling settlement/survival and substratum particle size. These results explain the spatial differences in abundance observed in the field in relation to the distribution and ratio of sands to silt on the Muan flats.  相似文献   

11.
Hydraulic requirements of stream communities: a case study on invertebrates   总被引:5,自引:1,他引:4  
1. We relate invertebrate assemblages to direct measurements of near‐bed hydraulic conditions that integrate the complex three‐dimensional structure of flow close to the bottom. 2. We sampled invertebrate taxa from a Mediterranean River along a spatial gradient of increasing shear stress in two seasons (spring and autumn) with different hydrological conditions. We used a recently described ordination technique, Outlying Mean Index (OMI) analysis, to study the response of stream invertebrates to near‐bed hydraulic parameters. 3. The distribution of nearly 70% of the taxa collected was significantly related to the hydraulic parameters assessed. In both seasons, shear stress and Froude number were the most important hydraulic parameters whereas substratum particle size and bed roughness had less influence. Most of the 31 taxa collected in both seasons had a higher OMI (an index showing the deviation between the mean environmental conditions used by a taxon and the mean environmental conditions used by a theoretical taxon uniformly distributed across the studied gradient) in autumn (when flow was greater) and were found in samples with high shear stress and high Froude number. This suggests that benthic invertebrates changed their preferences according to flow conditions. 4. Taxon richness declined with increased shear stress during lower flow in spring. Finally, and agreeing with previous results, the proportion of filter feeders and collector‐gatherers was inversely related to shear stress. 5. Our results are a first step towards better habitat suitability models that could inform management decisions.  相似文献   

12.
An account is given of the size, form, texture, colour, cohesion and composition of the faeces of 41 species of invertebrates found in chalk streams. The relationships between the character of the faeces and the taxonomic positions and habits of the producers are considered.The importance of faeces production relative to the bulk of stream bed sediments is discussed. Faeces of different origins accumulate in different areas of the stream bed and these differences may be associated in part with their form and structure and in part with the distribution of the species from which they originate. In the summer months tubificid worms alone may be responsible for reworking between 0.3% and 0.5% of the fine particulate material in sediments every day.  相似文献   

13.
Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.   总被引:7,自引:0,他引:7  
1. We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20–40 times stream width). 2. Non‐metric multidimensional scaling (NMDS) identified 85% of the among‐site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter‐cyprinid‐redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3. Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60–0.82) by reach‐level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4. Our results contrast with the ‘River Continuum Concept’ which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ‘Process Domains Concept’, which argues that local‐scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities.  相似文献   

14.
1. The importance of native freshwater mussels for ecosystem processes depends on their density, size distribution and activity. In lakes, many of the factors that affect mussels (fish hosts, habitat, food) could be directly or indirectly related to wind‐driven physical processes. 2. We tested whether the abundance and size of Elliptio complanata in the shallow, nearshore areas of a medium‐sized lake were related to site exposure, substratum type and fish distribution. To disentangle some of the correlated variables known to affect mussel distribution, we used paired exposed and sheltered sampling sites along the 7‐km fetch of the lake basin. 3. The distribution of sediment characteristics in nearshore areas was highly predictable. The mean depth of accumulated soft sediments decreased with increasing fetch at wind‐exposed sites, but increased with increasing fetch at sheltered sites. Sediments were deeper along the main shoreline than around islands. Deeper sediments tended to be finer and higher in silt content and organic fraction. 4. The density and proportion of juvenile mussels along the main shoreline varied in a unimodal way with sediment depth. These results suggest that wind‐driven physical forces affect the transport of young juveniles to sediment depositional areas and create sediment conditions that influence their growth and survival. In contrast, the proportion of juvenile mussels around islands was not related to sediment characteristics, but decreased with remoteness of the island, suggesting that the distribution of juvenile mussels may be limited by fish movements. These results are tentative since they do not include buried juvenile mussels. 5. We also found a unimodal relationship between total mussel density (juveniles and adults) and sediment depth but, in contrast to the relationship for juveniles only, it applied to all sites with soft sediments, including islands. We conclude that factors related to sediment depth affect the growth and survival of adult mussels around islands and that these factors are strong enough to modify the pattern of distribution established via dispersal during earlier life stages. 6. The mean shell length of adults at different sites within the lake basin ranged from 60 to 85 mm. Mussel shell length decreased with increasing fetch at sites exposed to the prevalent winds, but was relatively constant on the sheltered side of peninsulas and islands. The size of unionid mussels in different parts of the lake seems to be determined both by their exposure to physical forces and by sediments. 7. The local distribution of E. complanata is determined, directly and indirectly, by wind‐driven forces. These processes are likely to be important for other benthic organisms affected by similar habitat conditions (e.g. sediment characteristics, physical disturbance).  相似文献   

15.
The general rate model was developed and solved to describe protein adsorption in an expanded bed. The model takes into account axial variation of bed porosity, particle size distribution (PSD), external and intraparticle mass transfer, and dispersion in liquid and solid phase. The analysis of the influence of the model parameters on dynamic capacity (DC) was investigated. The simulation results showed that major impact on dynamic capacity is exerted by intraparticle mass transfer (particle diameter and pore diffusivity). The external mass transfer resistance and dispersion parameters have secondary effect on DC. The replacement of axial PSD by the mean particle diameter results in error in calculation of DC, which increases remarkably with the increase of mean particle diameter. The PSD can promote a very slow approaching of plateau concentration by breakthrough curves. It was shown also that axial bed porosity variation could be replaced by average porosity with negligible error for DC calculations.  相似文献   

16.
Chironomid microdistribution in gravel of an English chalk river   总被引:3,自引:0,他引:3  
1. The study aimed to determine the relative importance of certain environmental variables to the distribution of instars of chironomid species in mid-stream gravels of the River Pang. 2. Core samples of gravel substrata were collected over 1 year. Water depth, current, particle size distribution, substratum porosity and detritus were recorded for each sample. The four principal components from a linear ordination of the environmental variables were used to constrain the ordination of chironomid data using the program CANOCO. 3. Microdistribution was principally related to a temporal gradient of water depth, current and substratum heterogeneity. There was significant spatial separation of instars along a gradient of fine detritus, silt and substratum porosity. The distributions of early instars of three taxa were also significantly related to particle size. There was a significant relationship between the size distribution of larvae and the spatial distribution of fine sediments and detritus. This relationship was strengthened when restricted to larvae classified as scrapers.  相似文献   

17.
The influence of matrix properties and operating conditions on the performance in fluidized-bed adsorption has been studied using Streamline diethyl-aminoethyl (DEAE), an ion exchange matrix based on quartz-weighted agarose, and bovine serum albumin (BSA) as a model protein. Three different particle size fractions (120-160 mum, 120-300 mum, and 250-300 mum) were investigated. Dispersion in the liquid phase was reduced when particles with a wide size distribution were fluidized compared to narrow particle size distributions. When the mean particle diameter was reduced, the breakthrough capacities during frontal adsorption were enlarged due to a shorter diffusion path length within the matrix. At small particle diameters the effect of film mass transfer became more relevant to the adsorption performance in comparison to larger particles. Therefore matrices designed for fluidized-bed adsorption should have small particle diameter and increased mean particle density to ensure small diffusion path length in the particle and a high interstitial velocity to improve film mass transfer. Studies on the influence of sedimented matrix height on axial mixing showed an increased Bodenstein number with increasing bed length. Higher breakthrough capacities were also found for longer adsorbent beds due to reduced dispersion and improved fluid and particle side mass transfer. With increasing bed height the influence of flow rate on breakthrough capacity was reduced. For a settled bed height of 50 cm breakthrough capacities of 80% of the equilibrium capacity for flow rates varying from 3 to 9 cm/min could be achieved. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 54-64, 1997.  相似文献   

18.
Understanding the constraints on community composition at multiple spatial scales is an immense challenge to community and ecosystem ecologists. As community composition is basically the composite result of species’ spatial patterning, studying this spatial patterning across scales may yield clues as to which scales of environmental heterogeneity influence communities. The now widely documented positive interspecific relationship between ‘regional’ range and mean ‘local’ abundance has become a generalisation describing the spatial patterning of species at coarse scales. We address some of the shortcomings of this generalisation, as well as examine the cross‐scale spatial patterning (aggregation and density levels) of littoral‐benthic invertebrates in very large lakes. Specifically, we (a) determine whether the positive range‐abundance relationship can be reinterpreted in terms of the actual spatial structure of species distributions, (b) examine the relationship between aggregation and density across different spatial scales, and (c) determine whether the spatial patterning of species (e.g. low density/aggregated distribution) is constant across scales, that is, whether our interpretation of a species spatial pattern is dependent on the scale at which we choose to observe the system. Spatial aggregation of littoral invertebrates was generally a negative function of mean density across all spatial scales and seasons (autumn and spring). This relationship may underlie positive range‐abundance relationships. Species that were uncommon and highly aggregated at coarse spatial scales can be abundant and approach random distributions at finer spatial scales. Also, the change in spatial aggregation of closely related taxa across spatial scales was idiosyncratic. The idiosyncratic cross‐scale spatial patterning of species implies that multiple scales of environmental heterogeneity may influence the assembly of littoral communities. Due to the multi‐scale, species‐specific spatial patterning of invertebrates, littoral zone communities form a complex spatial mosaic, and a ‘spatially explicit’ approach will be required by limnologists in order to link littoral‐benthic community patterns with ecosystem processes in large oligotrophic lakes.  相似文献   

19.
At the water-sediment interface of aquatic ecosystems, the presence of biogenic structures produced by benthic invertebrates strongly affects biogeochemical processes. The quantification of these structures and the assessment of the vertical distribution of fauna are essential for determining the impact of communities in sediments. In the present study, computer axial tomodensitometry (CAT-scan) was used to measure the space occupied by an intertidal community of the St. Lawrence estuary. Three cores were sampled at a site that was considered homogeneous according to surface sediments. The vertical distribution of biogenic structures and gravel were measured in the three cores using CAT-scan; the vertical distribution of fauna was also analysed for each core. The biogenic structures were highest at the water-sediment interface and decreased with depth in the three cores. The number of invertebrates also decreased with depth. We observed similar distributions of biogenic structures in cores 1 and 2. However, fewer biogenic structures were observed below 90 mm in core 3. This result was correlated with a high quantity of gravel from 90 to 140 mm in core 3 whereas the other cores had lower quantities of coarse material. We found relationships among the distributions of biogenic structures, fauna, and sediment characteristics (gravel quantity) that can affect species distribution. The vertical distributions of Macoma balthica, Mya arenaria, Nereis virens, and small-sized gallery-producing species (nematodes and oligochaetes) could also be recorded with the CAT-scan method. Thus, CAT-scan is an excellent tool to determine the fine-scale heterogeneity in the space occupied by benthic invertebrates in sediments.  相似文献   

20.
1. We investigated the effects of local disturbance history and several biotic and abiotic habitat parameters on the microdistribution of benthic invertebrates after an experimental disturbance in a flood‐prone German stream. 2. Bed movement patterns during a moderate flood were simulated by scouring and filling stream bed patches (area 0.49 m2) to a depth of 15–20 cm. Invertebrates were investigated using ceramic tiles as standardized substrata. After 1, 8, 22, 29, 36 and 50 days, we sampled one tile from each of 16 replicates of three bed stability treatments (scour, fill and stable controls). For each tile, we also determined water depth, near‐bed current velocity, the grain size of the substratum beneath the tile, epilithic algal biomass and standing stock of particulate organic matter (POM). 3. Shortly after disturbance, total invertebrate density, taxon richness and density of the common taxa Baetis spp. and Chironomidae were highest in stable patches. Several weeks after disturbance, by contrast, Baetis spp. and Hydropsychidae were most common in fill and Leuctra spp. in scour patches. The black fly Simulium spp. was most abundant in fill patches from the first day onwards. Community evenness was highest in scour patches during the entire study. 4. Local disturbance history also influenced algal biomass and POM standing stock at the beginning of the experiment, and water depth, current velocity and substratum grain size throughout the experiment. Scouring mainly exposed finer substrata and caused local depressions in the stream bed characterized by slower near‐bed current velocity. Algal biomass was higher in stable and scour patches and POM was highest in scour patches. In turn, all five common invertebrate taxa were frequently correlated with one or two of these habitat parameters. 5. Our results suggest that several ‘direct’ initial effects of local disturbance history on the invertebrates were subsequently replaced by ‘indirect’ effects of disturbance history (via disturbance‐induced changes in habitat parameters such as current velocity or food).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号