首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The contribution of predators and abiotic factors to the regulation of the biomass and seasonal succession of crustacean zooplankton was studied in Lake Rehtijärvi (southern Finland). Field data in combination with bioenergetics modeling indicated that invertebrate planktivory by Chaoborus depressed cladoceran populations during early summer. In particular, bosminids that generally form the spring biomass peak of cladocerans in stratified temperate lakes did not appear in the samples until July. In July, predation pressure by chaoborids was relaxed due to their emergence period and cladoceran population growth appeared to be limited by predation by planktivorous fish. The effect of fish predation was amplified by reduced refuge availability for cladocerans. The concentration of dissolved oxygen below the epilimnion was depleted, forcing cladocerans to move upward to less turbid and thus more dangerous water layers. The effect of size selective predation by fish resulted in reduced mean size of cladocerans during the period when refuge thickness (thickness of the water layer with oxygen concentration <1 mg l?1 and water turbidity >30 NTU) was lowest. The results confirmed that in clay-turbid lakes, invertebrate predators could be the main regulators of herbivorous zooplankton even when cyprinid fish are abundant.  相似文献   

2.
Late-evening gut inspection of a dominant planktivore (smelt) and evaluation of densities, fecundities, and body-size distributions in dominant zooplankton prey (cladocerans) were made in day-to-day sequences in June–July (24 days in 1999 and 24 days in 2000). This was conducted as a field test of the hypothesis that species-specific population densities in cladocerans result from size-selective predation by a dominant fish assumed to be a general predator, switching from one prey to another as relative abundance changes. Little of the expected coincidence has been revealed between population density declines and increased numbers of a given prey in smelt diet. However, the data were consistent with the notion that fish would switch from one prey to another depending on the prey relative abundance (the number of prey a fish would see in its reaction field volume). Each cladoceran population fluctuated around its species-specific density level, lower or higher, depending on individual susceptibility to smelt predation, from 0.2 ind. l–1 in large-bodied Daphnia hyalina and Leptodora kindtii, to 30.0 ind. l–1 in small-bodied Daphnia cucullata andBosmina thersites. In spite of high fish-to-fish and day-to-day variability in both smelt diet and smelt selectivity for different prey, all cladocerans (also copepods and midge larvae) were equally persistent in smelt diet, and smelt selectivity was similar for small- and large-bodied prey categories, but lower for elongated-(Daphnia, Diaphanosoma) than for compact-body (Bosmina, Chydorus) species, when integrated for the entire sampling time. Closer examination of D. cucullata and B. thersites revealed strong smelt selection for later instars and females with greater clutches, showing that size distribution in a cladoceran population might be structured by fish predation in a similar way to that a cladoceran community (species relative abundance) is structured in a lake habitat. The birth-rate-compensation hypothesis is offered to explain why the value of food selectivity index in a planktivorous fish would remain the same for alternate prey categories with similar life-history traits, unless they differ in susceptibility to predation before the time of first reproduction.  相似文献   

3.
1. An in situ enclosure experiment was conducted in a deep reservoir of southern China to examine (i) the effects of a low biomass (4 g wet weight m?3) of silver carp (Hypophthalmichthys molitrix) and nutrients on the plankton community and (ii) the response of Daphnia to eutrophication. 2. In the absence of fish, Daphnia galeata dominated the zooplankton community, whereas calanoids were dominant in the fish treatments, followed by D. galeata. Silver carp stocking significantly reduced total zooplankton biomass, and that of D. galeata and Leptodorarichardi, but markedly increased the biomass of smaller cladocerans, copepod nauplii and rotifers. In contrast, nutrient enrichment had no significant effect on the plankton community except for cyclopoids. 3. Chlorophyta, Cryptophyta and Bacillariophyta were dominant phytoplankton groups during the experiment. Chlorophyta with high growth rates (mainly Chlorella vulgaris in the fish enclosures and Ankyra sp. in the fishless enclosures) eventually dominated the phytoplankton community. Total phytoplankton biomass and the biomass of edible phytoplankton [greatest axial linear dimension (GALD) < 30 μm], Chlorophyta, Cryptophyta, Bacillariophyta and Cyanobacteria showed positive responses to fish stocking, while inedible phytoplankton (GALD ≥ 30 μm) was significantly reduced in the fish enclosures. However, there was no significant effect on the plankton community from the interaction of fish and nutrients. 4. Overall, the impact of fish on the plankton community was much greater than that of nutrients. High total phosphorus concentrations in the control treatment and relatively low temperatures may reduce the importance of nutrient enrichment. These results suggest it is not appropriate to use a low biomass of silver carp to control phytoplankton biomass in warmer, eutrophic fresh waters containing large herbivorous cladocerans.  相似文献   

4.
1. The impact of changes in submerged macrophyte abundance on fish-zooplankton-phytoplankton interactions was studied in eighteen large-scale (100 m2) enclosures in a shallow eutrophic take. The submerged macrophytes comprised Potamategon pectinatus L., P. pusillus L. and Callitriche hermaphroditica L. while the fish fry stock comprised three-spined sticklebacks, Gasterosteus acuteatus L., and roach, Rutilus rutilus L. 2. In the absence of macrophytes zooplankton biomass was low and dominated by cyclopoid copepods regardless of fish density, while the phytoplankton biovolume was high (up to 38 mm31) and dominated by small pennate diatoms and chlorococcales. When the lake volume infested by submerged macrophytes (PVI) exceeded 15–20% and the fish density was below a catch per unit effort (CPUE) of 10 (approx. 2 fry m?2), planktonic cladoceran biomass was high and dominated by relatively large-sized specimens, while the phytoplankton biovolume was low and dominated by small fast-growing flagellates. At higher fish densities, zooplankton biomass and average biomass of cladocerans decreased and a shift to cyclopoids occurred, while phytoplankton biovolume increased markedly and became dominated by cyanophytes and dinoflagellates. 3. Stepwise multiple linear regressions on log-transformed data revealed that the biomass of Daphnia, Bosmina, Ceriodaphmia and Chydorus were all significantly positively related to PVI and negatively to the abundance of fish or PVI x fish. The average individual biomass of cladocerans was negatively related to fish, but unrelated to PVI. Calculated zooplankton grazing pressure on phytoplankton was positively related to PVI and negatively to PVI x fish. Accordingly the phytoplankton biovolume was negatively related to PVI and to PVI x zooplankton biomass. Cyanophytes and chryptophytes (% of biomass) were positively and Chlorococcales and diatoms negatively related to PVI, while cyanophytes and Chlorococcales were negatively related to PVI x zooplankton biomass. In contrast diatoms and cryptophytes were positively related to the zooplankton biomass or PVI x zooplankton. 4. The results suggest that fish predation has less impact on the zooplankton community in the more structured environment of macrophyte beds, particularly when the PVI exceeds 15–20%. They further suggest that the refuge capacity of macrophytes decreases markedly with increasing fish density (in our study above approximately 10 CPUE). Provided that the density of planktivorous fish is not high, even small improvements in submerged macrophyte abundance may have a substantial positive impact on the zooplankton, leading to a lower phytoplankton biovolume and higher water transparency. However, at high fish densities the refuge effect seems low and no major zooplankton mediated effects of enhanced growth of macrophytes are to be expected.  相似文献   

5.
We examined the impact of five silver carp biomass levels (0, 8, 16, 20, and 32 g m−3) on plankton communities and water quality of Villerest eutrophic reservoir (France). We realized the experiments using outdoor mesocosms. The presence of silver carp led to changes in zooplankton and phytoplankton assemblages. High fish biomass strongly reduced cladoceran abundance (through predation). Silver carp inefficiently grazed down particles < 20 μm. More importantly, however, the suppression of herbivorous cladocerans resulted in the increase of small size algae which were relieved from grazing and benefit from high nutrient concentrations. In contrast, in mesocosms without fish, the dominance of cladocerans (mainly Daphnia) controlled small size algae and probably also larger size algae (colonial chlorophytes, cyanobacteria). Thus, the Secchi disc transparency increased markedly. Through cascade effects, the modification of grazers communities led to changes in the utilization patterns of the added nutrients by phytoplankton communities. In high fish biomass treatments, nutrients were more efficiently accumulated into particulate fractions compared with no-fish and low-fish biomass treatments that were characterized by higher dissolved nutrients concentrations. Zooplankton was an essential source of food for silver carp. The productivity of zooplankton sustained a moderate silver carp biomass (up to 16 g m−3). In the presence of the highest fish biomass, the productivity of zooplankton was not large enough and silver carps fed on additional phytoplankton. Although mesocosms with high fish biomass were characterized by a slight cyanobacteria development compared with other fish mesocosms, silver carp was not effective in reducing cyanobacteria dominance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We hypothesized that native Leptodora kindtii would be shorter and have smaller feeding baskets in central Ontario lakes with greater abundances of small-bodied zooplankton prey, and that differences in zooplankton size among lakes could be attributed to the invasive cladoceran Bythotrephes longimanus. We evaluated these conjectures by comparing size metrics of Leptodora and the size of their preferred cladoceran prey in lakes invaded or not by Bythotrephes. Leptodora was less abundant in invaded lakes, but were smaller bodied with smaller feeding baskets only in lakes with long invasion histories. Small cladoceran abundance was greater in non-invaded lakes and was directly related to Leptodora abundance although not to Leptodora size. Mean Leptodora body size declined with increasing abundance of Bythotrephes. We evaluated three possible explanations for these patterns in Leptodora—(a) competition with Bythotrephes for zooplankton prey, (b) direct predation by Bythotrephes, and (c) size-selective predation by fish. While we were unable to unequivocally distinguish among these hypotheses, our observations are most consistent with predation by Bythotrephes changing zooplankton community composition and size structure in a manner that is detrimental to Leptodora. Our results indicate that Bythotrephes invasion may trigger more complex and subtle changes in food webs than previously thought.  相似文献   

7.
The impact of Pseudorasbora parva, a common zooplanktivorous fish species in Japan, on a zooplankton community was analyzed in experimental tanks, half of which were stocked with the fish. Different zooplankton species showed different responses to the introduction of the fish. In the presence of the fish, the populations of the large cladoceran Ceriodaphnia and the predatory copepod Mesocyclops were reduced, but the population of the herbivorous copepod Eodiaptomus and the small cladocerans Bosmina fatalis and Bosminopsis deitersi increased relative to the controls. The increase of Mesocyclops seen in the control tanks might have suppressed the populations of the small cladocerans, which are vulnerable to invertebrate predation. The results suggest that the population densities of the large prey items preferred by the fish, Ceriodaphnia and Mesocyclops, were controlled directly by fish predation, but the population densities of the smaller and less preferred zooplankton were controlled indirectly through the food-web cascade.  相似文献   

8.
The strength of the direct effect by scraping cladocerans and the indirect effect of nutrient regeneration by filtering herbivorous cladocerans on periphyton growth was investigated in a littoral food web. Ten enclosures were erected in a lake in an area with artificial vegetation. Five enclosures were stocked with juvenile perch ( Perca fluviatilis ) and five lacked fish. In addition, a reference area in the artificial vegetation was sampled. The mesh size of the net surrounding the cages was chosen to allow an inflow of phytoplankton into the cages from the surrounding water. The periphyton and filtering herbivorous cladoceran biomasses were highest in the fish-free treatment. There was no difference in phytoplankton biomass between treatments despite the large difference in filtering herbivorous cladoceran biomass, suggesting that the inflow of phytoplankton into enclosures completely compensated for the loss due to filtering. The reference area and the enclosure with fish showed the same patterns in developments with respect to filtering herbivorous cladocerans and periphyton. Scraping cladoceran biomass was higher in the fish-free treatment resulting in a positive correlation between scraping cladoceran and periphyton biomass. Our results suggest that the positive indirect effect of filtering herbivorous cladoceran nutrient regeneration on periphyton was stronger than the negative direct effect of grazing by scraping cladocerans on periphyton in this semi-open system, and that pelagic production by phytoplankton may foster periphyton growth in the littoral habitat via filtering herbivorous cladocerans. Furthermore, heterogeneity within trophic levels involving primary producers of different growth forms such as phytoplankton and periphyton may enhance the potential for compensatory responses via nutrient recycling.  相似文献   

9.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

10.
Seasonal and vertical distribution, migratory patterns and reproductive effort in coexisting cladocerans were investigated in three humic lakes with different, but low phytoplankton abundances and varying fish predation pressure. Seasonal and vertical habitat or niche overlap varied, but were high within most pairs of species in all localities. Migration was conspicuous in presence of planktivorous fish, less so in the fish free lake. Despite algal densities below incipient limiting level (30–200 μg C I−1) and a low ratio (3–10) of algal to cladoceran biomass, zooplankton distribution and reproductive parameters were not clearly related to algal biomass. Bacterial biomass equalled 10–50% of phytoplankton biomass, while detritus by far was the largest of the particulate compartements. It was concluded that with a possible exception of the early summer algal bloom, additional carbon sources (bacteria, detritus) are important to cladoceran nutrition in these humic lakes. A large share of N- and P-poor detritus in the diet would give zooplankton productivity limitation by food quality in terms of elemental composition rather than food quantity. This would permit coexistence even of species with rather high food overlap, but give low production rates for all species in agreement with the observations.  相似文献   

11.
The role of pelagic cladoceran communities is discussed on the basis of a comparative study conducted in two Estonian lakes, the moderately eutrophic Lake Peipsi (Ntot 700, Ptot 40 μg l?1 as average of ice-free period of 1997–2003) and in a strongly eutrophic Lake Võrtsjärv (Ntot 1600, Ptot 54 μg l?1). The cladoceran community was found to reflect the differences in the trophic state of these lakes. In L. Peipsi, characteristic species of oligo-mesotrophic and eutrophic waters co-dominated (making up 20% or more of total zooplankton abundance or biomass), whereas in L. Võrtsjärv only species of eutrophic waters occurred. In L. Peipsi, the dominant cladocerans were Bosmina berolinensis and Daphnia galeata, while Chydorus sphaericus was the most abundant cladoceran in L. Võrtsjärv. The cladocerans of L. Peipsi (mean individual wet weight 25 μg) were significantly (threefold) larger than those of L. Võrtsjärv (8 μg). The mean wet biomass of cladocerans was higher and total cladoceran abundance was lower in L. Peipsi compared to L. Võrtsjärv (biomass varied from 0.133 to 1.570 g m?3; mean value 0.800 g m?3 in L. Peipsi and from 0.201 to 0.706 g m?3, mean 0.400 g m?3 in L. Võrtsjärv; the corresponding data for abundances were: 8,000–43,000 ind. m?3, mean 30,000 ind. m?3 for L. Peipsi, 50,000–100,000, mean 52,000 ind. m?3 for L. Võrtsjärv). Based upon differences in body size, cladocerans were more effective transporters of energy in L. Peipsi than in L. Võrtsjärv. Cladocerans proved to be informative indicators of the trophic status and of the efficiency of the food web in studied lakes.  相似文献   

12.
Alois Herzig 《Hydrobiologia》1995,307(1-3):273-282
In the Neusiedler See, Leptodora kindti appeared in the plankton in April/May; the growing season lasted until November. Its optimum conditions prevailed during the summer months, when densities of >500 ind. m–3 were recorded. First, males appeared by the mid/end of August, while maximum resting egg production occurred in September. At temperatures below 10 °C the population declined.At high population levels, L. kindti caused suppression of its preferred prey item, the juveniles of Diaphanosoma mongolianum. Twenty-five to 45% of juvenile Diaphanosoma can be eliminated by Leptodora. This predation impact is a pronounced but short-term event. During the periods of high Leptodora densities, a significant relationship between Leptodora predation and the death rate of Diaphanosoma is found.The older developmental instars of L. kindti are themselves endangered by the impact of planktivorous fish (i.e. Pelecus cultratus, Alburnus alburnus), which show a preference for Leptodora larger than 6 mm. Frequently, elimination by fish corresponds with high death rates of Leptodora. During the periods when adult Leptodora occurred in numbers >50 ind. m–3, 55% of the variance connected with its death rate can be attributed to fish predation. The success of this population of L. kindti is discussed within the framework of predator-prey interactions.  相似文献   

13.
1. Using 5‐m2 field enclosures, we examined the effects of Elodea canadensis on zooplankton communities and on the trophic cascade caused by 4–5 year old (approximately 16 cm) roach. We also tested the hypothesis that roach in Elodea beds use variable food resources as their diet, mainly benthic and epiphytic macroinvertebrates, and feed less efficiently on zooplankton. Switching of the prey preference stabilises the zooplankton community and, in turn, also the fluctuation of algal biomass. The factorial design of the experiment included three levels of Elodea (no‐, sparse‐ and dense‐Elodea) and two levels of fish (present and absent). 2. During the 4‐week experiment, the total biomass of euplanktonic zooplankton, especially that of the dominant cladoceran Daphnia longispina, decreased with increase in Elodea density. The Daphnia biomass was also reduced by roach in all the Elodea treatments. Thus, Elodea provided neither a favourable habitat nor a good refuge for Daphnia against predation by roach. 3. The electivity of roach for cladocerans was high in all the Elodea treatments. Roach were able to prey on cladocerans in Elodea beds, even when the abundance and size of these prey animals were low. In addition to cladocerans, the diet of roach consisted of macroinvertebrates and detrital/plant material. Although the biomass of macroinvertebrates increased during the experiment in all Elodea treatments, they were relatively unimportant in roach diets regardless of the density of Elodea beds. 4. Euplanktonic zooplankton species other than Daphnia were not affected by Elodea or fish and the treatments had no effects on the total clearance rate of euplanktonic zooplankton. However, the chlorophyll a concentration increased with fish in all the Elodea treatments, suggesting that fish enhanced algal growth through regeneration of nutrients. Thus, our results did not unequivocally show that Elodea hampered the trophic cascade of fish via lowered predation on grazing zooplankton. 5. In treatments with dense Elodea beds (750 g FW m?2), chlorophyll a concentration was always low suggesting that phytoplankton production was controlled by Elodea. Apparently, the top‐down control of phytoplankton biomass by zooplankton was facilitated by the macrophytes and operated simultaneously with control of phytoplankton production by Elodea.  相似文献   

14.
In Lake Lucerne, Switzerland, the predaceous cladocerans Leptodora kindti and Bythotrephes longimanus segregate along spatial and temporal dimensions. In spring (April–May/June), Bythotrephes longimanus occurs below 0–20 m, while Leptodora is absent. In summer and early autumn (July–September/October), when Leptodora dominates during daytime in the 0–20 m depth, Bythotrephes longimanus also lives in deeper zones. Food competition and fish predation pressure may be the cause of differences in ecology of Leptodora and Bythotrephes acquired during evolution. Due to its transparency and tolerance of higher temperature, Leptodora could avoid fish predation and, therefore, competes with Bythotrephes longimanus successfully. In addition, the differences between the two species may account for the spatial and temporal niche segregation in oligotrophic Swiss Lakes. But spatial niche segregation is less important in mesotrophic lakes with high prey density than in oligotrophic lakes with low prey density. In small, eutrophic lakes importance of temporal niche segregation also decreases, and Bythotrephes is seldom or not present. The preference of Bythotrephes to live in deeper water to avoid fish predation during summer may be the cause of its difficulties to establish itself in small and eutrophic lakes with high prey densities, where the hypolimnion is missing or anoxic.In the spring, Bythotrephes exhibits r-strategy (smaller body size and a higher fecundity), the female is already fertile after the first molt. In the summer, a K-strategy prevails (larger body length and lower fecundity than in the spring), and female Bythotrephes are fertile only after the second molt. Shortage of prey (biomass of Bosmina and Daphniadecreased after June especially in the surface layers) and the maximum fish predation pressure in summer may change the life strategy of Bythotrephes: while fecundity decreases from generation to generation, body length increases. Enhanced prey densities (e.g. during mesotrophic conditions in L. Lucerne) lead to larger individuals in summer and autumn.  相似文献   

15.
1. Grazer and nutrient controls of phytoplankton biomass were tested on two reservoirs of different productivity to assess the potential for zooplankton grazing to affect chlorophyll/phosphorus regression models under Australian conditions. Experiments with zooplankton and nutrients manipulated in enclosures, laboratory feeding trials, and the analysis of in-lake plankton time series were performed. 2. Enclosures with water from the more productive Lake Hume (chlorophyll a = 3–17.5 μg l–1), revealed significant zooplankton effects on chlorophyll a in 3/6, phosphorus limitation in 4/6 and nitrogen limitation in 1/6 of experiments conducted throughout the year. Enclosures with water from the less productive Lake Dartmouth (chlorophyll a = 0.8–3.5 μg l–1), revealed significant zooplankton effects in 5/6, phosphorus limitation in 5/6 and nitrogen limitation in 2/6 of experiments. 3. While Lake Hume enclosure manipulations of the biomass of cladocerans (Daphnia and Diaphanosoma) and large copepods (Boeckella) had negative effects, small copepods (Mesocyclops and Calamoecia) could have positive effects on chlorophyll a. 4. In Lake Hume, total phytoplankton biovolume was negatively correlated with cladoceran biomass, positively with copepod biomass and was uncorrelated with total crustacean biomass. In Lake Dartmouth, total phytoplankton biovolume was negatively correlated with cladoceran biomass, copepod biomass and total crustacean biomass. 5. In both reservoirs, temporal variation in the biomass of Daphnia carinata alone could explain more than 50% of the observed variance in total phytoplankton biovolume. 6. During a period of low phytoplankton biovolume in Lake Hume in spring–summer 1993–94, a conservative estimate of cladoceran community grazing reached a maximum of 0.80 day–1, suggesting that Cladocera made an important contribution to the development of the observed clear-water phase. 7. Enclosure experiments predicted significant grazing when the Cladocera/Phytoplankton biomass ratio was greater than 0.1; this threshold was consistently exceeded during clear water phase in Lake Hume. 8. Crustacean length had a significant effect on individual grazing rates in bottle experiments, with large Daphnia having highest rates. In both reservoirs, mean crustacean length was negatively correlated with phytoplankton biovolume. The observed upper limit of its variation was nearly twice as high compared to other world lakes.  相似文献   

16.
Crustacean zooplankton abundance and composition were determined at one offshore and three nearshore sites in the hypertrophic Rietvlei Dam on 19 dates between July 2009 and December 2011. Total biomass fluctuated seasonally, generally declining from spring to winter through the annual cycle, but also appeared to decline progressively through the study. On overall average, total biomass was high (0.51 mg l–1 or 2.39 g m–2 DW), with Daphnia accounting for ~40%. Total volumetric biomass was invariably higher in shallow nearshore than offshore locations (average time-paired ratio = 8.1), with comparably large-bodied Daphnia (geometric mean ~1.2 mm, largest individuals ~1.75 mm) in both habitats, contra-indicating substantive opportunistic zooplanktivory by juvenile fish. Zooplankton was dominated numerically (ind. l–1, overall average values) by cyclopoid copepods, mostly Thermocyclops (47.1 nauplii and 86.5 copepodites), plausibly favoured by their selective raptorial feeding mode. Cladoceran densities were lower — Daphnia (25.0), Bosmina (7.1), Ceriodaphnia (2.9) and sporadically occurring Moina and Chydorus (<0.5). Seasonal replacement of Daphnia by small-bodied cladocerans during late summer and into autumn was evident in near-monthly samples between July 2009 and June 2010. The findings reflect negligible zooplanktivory in Rietvlei, ruling out top-down biomanipulation prospects for its remedial management.  相似文献   

17.
We examined the impacts of moderate gradient silver carp biomass (five levels from 0 to 36 g.m-3, i.e. about 0-792 kg.ha-1) on zooplankton communities of the eutrophic Villerest reservoir (France). During our mesocosm experiment changes in zooplankton assemblages were dependent on silver carp biomass. In the fishless and low fish biomass treatments, zooplankton abundance increased through time, owing to a peak in cladoceran density, but decreased (mainly cladocerans) at highest fish biomass. Copepods and rotifers were less affected at the highest fish biomass and dominated zooplankton communities. We highlighted that the presence of high silver carp biomass could lead to changes in phytoplankton assemblage via the impact on herbivorous zooplankton. Since silver carp efficiently graze on particles > 20 microns, the suppression of herbivorous cladocerans could result in an increase in small size algae (< 20 microns) abundance since these species would be released from grazers as well as competitors (large algae grazed by silver carp) and nutrients levels would be enhanced by fish internal loading. Our results showed that the use of low silver carp biomass (< 200 kg.ha-1) would allow us to minimize these negative effects.  相似文献   

18.
Pelecus cultratus (razor fish), a cyprinid fish, has become a dominant species in Neusiedler See. Gut content analyses of 400 specimens collected in 1989 and 1990 showed that Pelecus fed mainly on large zooplankton (Diaphanosoma, Leptodora and Arctodiaptomus), although their diet also included Insecta (larvae, pupae and adults) and Arachnida (spiders), occasionally small fishes. Comparison of the relative abundance of the zooplankton species in the stomach to the lake indicated that Pelecus strongly selected cladocerans over copepods, and fed mostly on large-sized individuals of Diaphanosoma, Leptodora and Arctodiaptomus. The fish showed a significant positive selectivity only for individuals of Diaphanosoma > 1.0 mm and Leptodora > 4.0 mm. In contrast, selectivity increased continuously in relation to the diameter of the compound eye of both prey species. This suggested that prey visibility was a key factor in determining the prey selectivity by Pelecus. It also seems likely that the persistence of the Leptodora population in Neusiedler See can be attributed to negligible predation pressure on the smaller sized individuals of this species.  相似文献   

19.
Annual changes of rotifers, copepods, cladocerans, the ciliate Epistylis rotans, and larvae of Dreissena polymorpha were analysed for the period 1908–1990. Though food resources increased 6–10 fold in the course of eutrophication, only rotifers and Epistylis increased accordingly. Probably as a result of increased predation pressure crustaceans increased only twice. The seasonal pattern of metazoans and protozoans (flagellates, sarcodines, ciliates) were analysed for 12 and 3 years, resp. During winter and spring, large heterotrophic flagellates and ciliates dominated the zooplankton and were responsible for a pronounced - formerly underestimated - grazing pressure on phytoplankton. In early summer, metazoan filter-feeders were often able to cause a significant reduction of phyto- and protozooplankton. However, during some years, phytoplankton declined in the absence of a pronounced grazing pressure. Field data and experiments revealed that predators were able to regulate the density of cladocerans in early summer (mainly cyclopoids) and summer (mainly Leptodora, smelt and fish juveniles).  相似文献   

20.
Fossil cladoceran remains preserved in surface sediment samples from 44 oligotrophic lakes in south-central Ontario were examined to evaluate the relationships between species assemblages and measured environmental variables. Differences in cladoceran assemblages were related to physical and chemical variables using multivariate techniques. Redundancy Analysis (RDA) identified five environmental variables as significantly influencing assemblage composition: sulphate (SO42−), calcium (Ca2+), pH, maximum lake depth (Z max) and dissolved organic carbon (DOC). There was a distinct separation of lakes and taxa along the ion gradient based on SO4, Ca and pH. Additionally, cladoceran communities in coloured, shallow lakes had relatively higher abundances of littoral chydorid species and the pelagic taxa Holopedium spp., and the Daphnia pulex complex. Deep, clear lakes had relatively higher abundances of other pelagic taxa. Predation by fish (measured as presence–absence) and Chaoborus (measured as density) were less significant than some of the physico-chemical variables in influencing cladoceran assemblage structure. However, this could be due to the limited resolution of the predation data that was available at the time of this study. The distribution of cladocerans in the surface sediment, and their relation to these important environmental variables, suggests that there is considerable potential for the use of sedimentary cladoceran remains as environmental indicators in south-central Ontario lakes. Handling editor: J. Saros  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号