首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Normal Rat Kidney cells are allowed to reenter the cell cycle after quiescence they start to replicate DNA around 12 h, reaching a maximum at 20 h. Activation of DNA polymerase alpha parallels the increase in DNA synthesis. The addition of two different anti-calmodulin drugs, trifluoroperazine (7.5 microM) or W13 (10 micrograms/ml), to the media at 4 h after proliferative activation, inhibits DNA synthesis by 55% and 80%, respectively. The blockade of calmodulin produced by trifluoroperazine allows the cells to progress through G1 phase but stops progression through S phase as determined by 5-Bromo deoxyuridine labeling. Both anti-calmodulin drugs also inhibit by more than 50% the increase in DNA polymerase alpha activity observed at 20 h. These results indicate that a calmodulin-dependent event, essential for the activation of DNA polymerase alpha and subsequently for DNA replication, is produced during G1. Therefore, the control of DNA polymerase alpha activation is one of the ways by which calmodulin is regulating the progression of NRK cells through S phase.  相似文献   

2.
G P Reddy  W C Reed  E Sheehan  D B Sacks 《Biochemistry》1992,31(43):10426-10430
The involvement of calmodulin in the proliferation of Chinese hamster embryo fibroblast cells has been studied with a specific monoclonal antibody to calmodulin. We observed that calmodulin levels increase 2-fold in the late G1 period in these cells, and this coincides with the increase in DNA polymerase alpha activity as the cells progress synchronously from a quiescent state in the G1 to the S phase. However, there is a concurrent 10-fold enhancement of thymidine kinase activity, which is tightly coupled to the entry of cells into the S phase. Incubation of permeabilized S-phase cells with calmodulin-specific murine monoclonal antibody resulted in a dose-dependent inhibition of DNA replication. This inhibitory effect of anti-calmodulin antibodies on DNA replication is completely reversed by the addition of exogenously purified calmodulin. These observations provide evidence for the involvement of calmodulin in DNA replication and, therefore, in cell proliferation during the S phase.  相似文献   

3.
A cell surface macromolecular component from quiescent BALB/c 3T3 mouse cells (designated fibroblast growth regulatory factor, FGRF) inhibits DNA synthesis and cell division in growing 3T3 cells. Addition of FGRF to synchronized populations of growing 3T3 cells in the late G1 or early S phase did not inhibit DNA synthesis in the immediate S phase. However, a significant inhibition was observed in the S phase of the next round of cell cycle. Cells exposed to the regulatory factor in late S/early G2 or early G1 showed reduced DNA synthesis in the upcoming S phase; the late S/early G2 cells were more sensitive to inhibition than the cells in the G1. Further, the regulatory factor delayed the progression of G0/G1-arrested cells into the next S phase. These results suggest that the physiological effect of FGRF is to arrest cells in early G1, thus preventing their entry into a new round of cell cycle. In contrast to untransformed 3T3 cells, mouse cells transformed by SV40 were not subjected to growth-arrest by the regulatory factor, although the transformed cells contain active FGRF that inhibits DNA synthesis in growing 3T3 cells.  相似文献   

4.
We have analyzed the role of cocaine in the control of the rat fibroblast (EL2) cell proliferation. Our data show a dose-related effect on the inhibition of DNA synthesis and cell growth when cocaine is added with serum or with a pure growth factor [Epidermal Growth Factor (EGF)]. Pretreatment by drug did not appreciably enhance the inhibition of S-phase entry above that obtained when cocaine and mitogen were added simultaneously. On the contrary, exposure of quiescent EL2 cells to cocaine has little or no effect on DNA synthesis, when drug is removed before the mitogenic stimulus. Moreover, even when cocaine is added after EGF, an exposure only within 1–8 hours is required in order to inhibit stimulation of DNA synthesis. Cocaine also suppressed the general increase in protein synthesis that occurs during the first hour after EGF addition. The combined data suggest that cocaine inhibits the traverse of mitogen-stimulated quiescent EL2 cells from Go to S phase by acting on processes that take place during the initial phase of the cell cycle.  相似文献   

5.
We recently demonstrated that calmodulin and/or protein kinase C may play a crucial role in cholesterol-induced atherogenesis in experimental animal model system. The present study, which was undertaken to elucidate the effect of trifluoperazine (known as a potent inhibitor of calmodulin and protein kinase C) on DNA and LDL-receptor synthesis of aortic smooth muscle cells exposed to hypercholesterolemic medium, revealed that (a) trifluoperazine at a concentration of 25 microM caused an approximately threefold increase in the [35S]methionine-incorporated LDL-receptor protein as compared with values found in control cells; (b) the drug at concentrations greater than or equal to 0.1 microM caused inhibition of DNA synthesis as compared with values found in control cells. These results demonstrate that the preventive effect of trifluoperazine on the atherogenic activity of smooth muscle cells may be due to its ability to increase LDL-receptors synthesis as well as concomitant inhibitory action on DNA synthesis of smooth muscle cells exposed to hypercholesterolemic medium.  相似文献   

6.
A multiparametric analysis of the effects of human recombinant interferon alpha type A on Daudi cells involving flow cytometry and in vitro analysis of alpha and beta DNA polymerase activities has been performed. Results have disclosed (within 60 min of interferon treatment) a decrease of alpha polymerase driven DNA synthesis persisting to at least 24 h, while beta polymerase was poorly affected. Moreover, after 24 h of interferon treatment, a reduction of BrdUrd incorporation per cell, assessed by flow cytometry, was observed suggesting that DNA synthesis in S phase cells is almost completely abolished. The analysis of the effect of interferon on the distribution of cell cycle phases indicated that the G1/S transition is not inhibited by the treatment. These results support the hypothesis that interferon generates a transient initiating signal which quickly reaches the nucleus and produces a rapid inhibition of alpha polymerase activity, leading finally to the slowing of cell cycle progression.  相似文献   

7.
The calmodulin content of synchronized Chinese hamster ovary (CHO-K1) cells was determined at each phase of the cell cycle. The calmodulin content was minimum in the G1 phase, increased after the cells entered S phase and reached the maximum level at the late G2 or early M phase. When 30 μM of W-7 (calmodulin antagonist) was added at the S phase, the cell cycle was blocked at the late G2 or early M phase. The addition of W-7 also prevented the morphological changes caused by cholera toxin. These results suggest that calmodulin plays an important role in the phases through S to M, possibly in the initiation of DNA synthesis and in the mitosis.  相似文献   

8.
We had earlier shown that human foetal epithelial cells (WISH), growth-inhibited by interferon gamma (IFNgamma), were reversibly detained at a point prior to DNA synthesis. In the present study, we determined the window of action of IFNgamma in the G1 phase duration and the exact point of detention of WISH cells in cell cycle progression with respect to the known points of detention by the inhibitors of DNA replication initiation (aphidicolin and carbonyl diphosphonate) and of activation of replication protein A (6-dimethylaminopurine), of which RPA activation being the earlier event compared to DNA replication initiation in cell cycle progression. WISH cells, which were released from IFNgamma-induced arrest, permeabilised and exposed independently to these inhibitors show that IFNgamma detains WISH cells prior to initiation of DNA synthesis. Further, exposure of IFNalpha-synchronized (at G0/G1) or mimosine-synchronized (at G1/S) WISH cells to IFNgamma, which was added at different time points post-release from the synchronizing agent, showed that the cells were promptly responsive to the growth inhibitory action of IFNgamma only during the first 11h in G1 phase. Taken together, these results suggest that IFNgamma inhibits growth of WISH cells by detaining them at a point prior to initiation of DNA synthesis and that the IFN acts within the first 11h in G1 phase of the cell cycle.  相似文献   

9.
Cytochalasin B was used as a tool to study the inter-relationships between cell movement, the reinitiated DNA synthesis and the enhanced transport of specific small molecules stimulated by serum in quiescent 3T3 cells. Cytochalasin at concentrations of less than 1 mug/ml inhibits serum-stimulated movement within the monolayer and migration into a wound. Even at ten times this concentration there is little effect on the increase in DNA in the culture, indicating that movement away from neighboring cells is not required for the initiation of DNA synthesis. While DNA synthesis is not inhibited by concentrations of cytochalasin up to 10 mug/ml, the increased thymidine transport which is associated with the onset of the S phase of the cell cycle is inhibited and DNA synthesis cannot be measured by the labelling of nuclei with radioactive thymidine. Cytochalasin has a differential effect on the early transport changes produced by serum addition. Glucose transport is inhibited by low concentrations of the drug (less than 1 mug/ml) while the enhanced uptake of phosphate and uridine is unaffected by a 10-fold increase in concentration. Although the doses of cytochalasin required for 50% inhibition of hexose uptake and of cell movement are the same, no causal relationship between sugar transport and locomotion can be demonstrated. Cytochalasin affects membrane functions in at least two different ways. The drug inhibits the uptake of glucose directly but affects only the S-phase associated increase in thymidine transport.  相似文献   

10.
本文用流式细胞光度术(FCM)等方法研究了MNNG,ENNG和DMS对HeLa细胞DNA含量分布的影响。经MNNG(6.8μmol/L)处理后,细胞分裂减少,DNA合成速率下降,S期细胞的比例随处理时间的延长而增加。DMS显示有类似的现象而ENNG的效应则较小。  相似文献   

11.
An assay of adenosine(5')tetraphospho(5')adenosine (Ap4A), based on the luciferin/luciferase method for ATP measurement, was developed, which allows one to determine picomolar amounts of unlabeled Ap4A in cellular extracts. In eukaryotic cells this method yielded levels of Ap4A varying from 0.01 microM to 13 microM depending on the growth, cell cycle, transformation, and differentiation state of cells. After mitogenic stimulation of G1-arrested mouse 3T3 and baby hamster kidney fibroblasts the Ap4A pools gradually increased 1000-fold during progression through the G1 phase reaching maximum Ap4A concentrations of about 10 microM in the S phase. Quiescent 3T3 cells reach a high level of Ap4A (1 microM) in a 'committed' but prereplicative state if exposed to an external mitogenic stimulant (excess of serum) and simultaneously to a synchronizer which inhibits entry into the S phase (hydroxyurea). When the block for DNA replication was removed at varying times after removal of the stimulant decay of commitment to DNA synthesis was found correlated with a shrinkage of the Ap4A pool. Cells lacking a defined G1 phase (V79 lung fibroblasts, Physarum) possess a constitutively high base level of Ap4A (about 0.3 microM) even during mitosis. From this high level, Ap4A concentration increases only about tenfold during the S phase. Temperature-down-shift experiments, using chick embryo cells infected with transformation-defective temperature-sensitive viral mutants(td-ts), have shown that the expression of the transformed state at 35 degrees C is accompanied by a tenfold increase of the cellular Ap4A pool. Treatment of exponentially growing human cells with interferon leads, concomitantly with an inhibition of DNA syntheses, to a tenfold decrease in intracellular Ap4A levels within 20 h. The possibility of Ap4A being a 'second messenger' of cell cycle and proliferation control is discussed in the light of these results and those reported previously demonstrating that Ap4A is a ligand of mammalian DNA polymerase alpha, triggers DNA replication in quiescent mammalian cells and is active in priming DNA synthesis.  相似文献   

12.
利用钙调素calmodulin,CaM)拮抗剂─三氟拉嗪(trifluoperazine,TFP)对G0期小鼠C3H10T1/2成纤维细胞进入S期和DNA合成进行了研究.G0期细胞进入S期时,大量钙调素进入细胞核,其水平为G0期的2倍。TFP处理的细胞被阻抑在G1期,不仅使S期细胞群体下降,而且3H-TdR掺入DNA强度受到明显抑制.同时,TFP处理的细胞胸腺嘧啶核苷激酶(thymidinekinase,TK)基因表达及TK活性亦明显下降,但不影响S期细胞核内的钙调素水平,结果表明钙调素功能之抑制不仅阻抑细胞从G1期至S期的进程,而且对细胞DNA合成强度亦有抑制作用.  相似文献   

13.
Auxin induction of cell cycle regulated activity of tobacco telomerase.   总被引:5,自引:0,他引:5  
Telomerase activity was measured at each phase of the cell cycle in synchronized tobacco (Nicotiana tabacum) BY-2 cells in suspension culture with the use of the telomeric repeat amplification protocol assay. The activity was low or undetectable at most phases of the cell cycle but showed a marked increase at early S phase. The induction of telomerase activity was not affected by the S phase blockers aphidicolin (which inhibits DNA polymerase alpha) or hydroxyurea (which inhibits ribonucleotide reductase), but it was prevented by olomoucine, an inhibitor of Cdc2/Cdk2 kinases that blocks G(1)-S cell cycle transition. These results suggest that the induction of telomerase activity is not directly coupled to DNA replication by conventional DNA polymerases, but rather is triggered by the entry of cells into S phase. Various analogs of the plant hormone auxin, including indole-3-acetic acid, alpha-naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid, potentiated the increase in telomerase activity at early S phase; the growth-inactive analog 2,3-dichlorophenoxyacetic acid, however, had no such effect. Potentiation by indole-3-acetic acid of the induction of telomerase activity was dose dependent. Together, these data indicate that telomerase activity in tobacco cells is regulated in a cell cycle-dependent manner, and that the increase in activity at S phase is specifically inducible by auxin.  相似文献   

14.
Recent work has shown that macrophage-mediated cytostatic activity inhibits cell cycle traverse in G1 and/or S phase of the cell cycle without affecting late S, G2, or M phases. The present report is directed at distinguishing between such cytostatic effects on G1 phase or S phase using the accumulation of DNA polymerase alpha as a marker of G1 to S phase transition. Quiescent lymphocytes stimulated with concanavalin A undergo a semisynchronous progression from G0 to G1 to S phase with a dramatic increase in DNA polymerase alpha activity between 20 and 30 hr after stimulation. This increase in enzyme activity was inhibited, as was the accumulation of DNA, when such cells were cocultured with activated murine peritoneal macrophages during this time interval. However, if mitogen-stimulated lymphocytes were enriched for S-phase cells by centrifugal elutriation and cocultured with activated macrophages for 4-6 hr, DNA synthesis was inhibited but the already elevated DNA-polymerase activity was unaffected. Similar results were obtained when a virally transformed lymphoma cell line was substituted as the target cell in this assay. These results show that both G1 and S phase of the cycle are inhibited and suggest that inhibition of progression through the different phases may be accomplished by at least two distinct mechanisms.  相似文献   

15.
A reversible arrest point in the late G1 phase of the mammalian cell cycle   总被引:18,自引:0,他引:18  
The effects of two different cell cycle inhibitors on the proliferation of human lymphoblastoid cells have been analyzed by flow cytometric techniques. Mimosine, a plant amino acid, reversibly blocks the cell cycle at a point which occurs roughly 2 h before the arrest mediated by aphidicolin, an inhibitor of DNA polymerase alpha activity, which defines the G1/S phase boundary. The levels of thymidine kinase mRNA, which increase at the onset of S phase, are higher in cells blocked with aphidicolin than in cells treated with mimosine whereas the opposite results are obtained in the case of p53 mRNA levels, which are known to be maximal in the late G1 phase. These results indicate that mimosine inhibits cell cycle traverse in the late G1 phase prior to the onset of DNA synthesis and identifies a previously undefined reversible cell cycle arrest point.  相似文献   

16.
我们曾经证明钙调蛋白(Calmodulin,CaM)拮抗剂三氟拉嗪(Trifluoperazine,TFP)有抑制人胃癌细胞增殖和诱导细胞形态向正常分化的效应。本文用CaM活性测定箱方法测定了TFP处理的人胃癌MGC-803细胞胞质内的CaM活性。同时也测定了磷酸二酯酶(Phosphodiesterase.PDE)活性的变化。结果表明TFP选择性抑制胞质内依赖Ca2+/CaM的PDE活性。氨茶碱有抑制CaM活化PDE的作用。本文对TFP作用机理及在调控癌细胞增殖及分化中的意义进行讨论。  相似文献   

17.
我们曾经证明钙调蛋白(Calmodulin,CaM)拮抗剂三氟拉嗪(Trifluoperazine,TFP)有抑制人胃癌细胞增殖和诱导细胞形态向正常分化的效应。本文用CaM活性测定箱方法测定了TFP处理的人胃癌MGC-803细胞胞质内的CaM活性。同时也测定了磷酸二酯酶(Phosphodiesterase.PDE)活性的变化。结果表明TFP选择性抑制胞质内依赖Ca~(2+)/CaM的PDE活性。氨茶碱有抑制CaM活化PDE的作用。本文对TFP作用机理及在调控癌细胞增殖及分化中的意义进行讨论。  相似文献   

18.
Treatment of human lymphoblastoid (Daudi) cells with interferons inhibits cell proliferation in culture within 24 h. The failure of cell growth has been shown to be associated with impaired processing and decreased stability of newly replicated DNA. Because there is a close relationship between DNA replication and protein synthesis we have measured protein synthesis in intact Daudi cells. Protein synthesis declined steadily between 24 and 96 h after interferon treatment to a value which is only 20-30% of the rate in control cells. The enzyme 2',5'-oligo(A) synthetase is induced but our data do not support a role for the 2',5'-oligo(A)-activated ribonuclease in the control of translation in this system.  相似文献   

19.
WANG  HONGQINGZHANG 《Cell research》1992,2(2):119-128
By using Hoechst 33342,rabbit anti calmodulin antibody,FITC-labeled goat anti rabbit IgG and SR101(sulfo rhodamine 101)simultaneously to stain individual normal and transformed cells,the microspectrophotometric analysis demonstrated that 3 markers which represented the nucleus,calmodulin and total protein respectively,could be recognized in individualj cells without interference,The phase of the cell cycle was determined by DNA content(Hoechst 33342),We found that in transformed cells(NIH3T3) tsRSV-LA90,cultured at 33℃ and transformed C3H10T1/2 Cells),the ration of calmodulin to total protein (based on the phases of cell cycle)was higher than that in normal cells (NIH3T3 tsRSV-LA90 cells,cultured at 39℃ and C3H10T1/2 cells)in every cell cycle phase,This ration increased obviously only from G1 to S phase in either normal or transformed cells.The results showed that calmodulinreally increased during the transformation,and its increase was specific.In the meantime when cells proceeded from G1 to S.the intraceollular calmodulin content also increased specifically.  相似文献   

20.
Autoradiographic analyses of deoxyribonucleic acid (DNA) synthesis in randomly growing KB cell cultures infected with equine abortion virus (EAV) suggested that viral DNA synthesis was initiated only at times that coincided with the entry of noninfected control cells into the S phase of the cell cycle. Synchronized cultures of KB cells were infected at different stages of the cell cycle, and rates of synthesis of cellular and viral DNA were measured. When cells were infected at different times within the S phase, viral DNA synthesis was initiated 2 to 3 hr after infection. However, when cells in G1 and G2 were infected, the initiation of viral DNA synthesis was delayed and occurred only at times corresponding to the S phase. The times when viral DNA synthesis began were independent of the time of infection and differed by as much as 5 hr, depending on the stage of the cell cycle at which cells were infected. Viral one-step growth curves were also related to the S phase in a manner which indicated a relationship between the initiation of viral DNA synthesis and the S phase. These data support the concept that initiation of EAV DNA synthesis is dependent upon some cellular function(s) which is related to the S phase of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号