首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Technological advances have made genetically modified mice, including transgenic and gene knockout mice, an essential tool in many research fields. Adult cardiomyocytes are widely accepted as a good model for cardiac cellular physiology and pathophysiology, as well as for pharmaceutical intervention. Genetically modified mice preclude the need for complicated cardiomyocyte infection processes to generate the desired genotype, which are inefficient due to cardiomyocytes’ terminal differentiation. Isolation and culture of high quantity and quality functional cardiomyocytes will dramatically benefit cardiovascular research and provide an important tool for cell signaling transduction research and drug development. Here, we describe a well-established method for isolation of adult mouse cardiomyocytes that can be implemented with little training. The mouse heart is excised and cannulated to an isolated heart system, then perfused with a calcium-free and high potassium buffer followed by type II collagenase digestion in Langendorff retrograde perfusion mode. This protocol yields a consistent result for the collection of functional adult mouse cardiomyocytes from a variety of genetically modified mice.  相似文献   

2.
Walsh S  Nygren J  Pontén A  Jovinge S 《PloS one》2011,6(11):e27500
Lack of expression of dystrophin leads to degeneration of muscle fibers and infiltration of connective and adipose tissue. Cell transplantation therapy has been proposed as a treatment for intractable muscle degenerative disorders. Several reports have demonstrated the ability of bone-marrow derived cells (BMDC) to contribute to non-haematopoietic tissues including epithelium, heart, liver, skeletal muscle and brain following transplantation by means of fusion and reprogramming. A key issue is the extent to which fusion and reprogramming can occur in vivo, particularly under conditions of myogenic deterioration.To investigate the therapeutic potential of bone marrow transplantation in monogenetic myopathy, green fluorescent protein-positive (GFP+) bone marrow cells were transplanted into non-irradiated c-kit receptor-deficient (W?1) mdx mice. This model allows BMDC reconstitution in the absence of irradiation induced myeloablation. We provide the first report of BMDC fusion in a W?1Dmd(mdx) deficient mouse model.In the absence of irradiation induced injury, few GFP+ cardiomyocytes and muscle fibres were detected 24 weeks post BMT. It was expected that the frequency of fusion in the hearts of W?1Dmd(mdx) mice would be similar to frequencies observed in infarcted mice. Although, it is clear from this study that individual cardiomyocytes with monogenetic deficiencies can be rescued by fusion, it is as clear that in the absence of irradiation, the formation of stable and reprogrammed fusion hybrids occurs, with the current techniques, at very low levels in non-irradiated recipients.  相似文献   

3.
With the desire to understand the contributions of multiple cellular elements to the development of a complex tissue; such as the numerous cell types that participate in regenerating tissue, tumor formation, or vasculogenesis, we devised a multi-colored cellular transplant model of tumor development in which cell populations originate from different fluorescently colored reporter gene mice and are transplanted, engrafted or injected in and around a developing tumor. These colored cells are then recruited and incorporated into the tumor stroma. In order to quantitatively assess bone marrow derived tumor stromal cells, we transplanted GFP expressing transgenic whole bone marrow into lethally irradiated RFP expressing mice as approved by IACUC. 0ovarian tumors that were orthotopically injected into the transplanted mice were excised 6-8 weeks post engraftment and analyzed for bone marrow marker of origin (GFP) as well as antibody markers to detect tumor associated stroma using multispectral imaging techniques. We then adapted a methodology we call MIMicc- Multispectral Interrogation of Multiplexed cellular compositions, using multispectral unmixing of fluoroprobes to quantitatively assess which labeled cell came from which starting populations (based on original reporter gene labels), and as our ability to unmix 4, 5, 6 or more spectra per slide increases, we''ve added additional immunohistochemistry associated with cell lineages or differentiation to increase precision. Utilizing software to detect co-localized multiplexed-fluorescent signals, tumor stromal populations can be traced, enumerated and characterized based on marker staining.1  相似文献   

4.
To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/-) mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/-) mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9) as a reference strain for model development. Pf3D7(0087/N9) caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.  相似文献   

5.
We demonstrate the establishment of transgenic mice, where the expression of the green fluorescent protein (GFP) is under control of the human cardiac α-actin promoter. These mice display cardiac specific GFP expression already during early embryonic development. Prominent GFP fluorescence was observed at the earliest stage of the murine heart anlage (E8). Cardiomyocytes of different developmental stages proved GFP positive, but the intensity varied between cells. We further show that contractions of single GFP positive cardiomyocytes can be monitored within the intact embryo. At later stages of embryonic development, the skeletal musculature was also GFP positive, in line with the known expression pattern of cardiac α-actin. The tissue specific labeling of organs is a powerful new tool for embryological as well as functional investigations in vivo.  相似文献   

6.
Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest.  相似文献   

7.
目的建立系统性表达绿色荧光蛋白的裸鼠,接种人源肺癌细胞验证该模型是否具有免疫缺陷性,并观察双色荧光的成像效果。方法利用系统性表达绿色荧光蛋白的C57BL/6J小鼠与BALB/C裸小鼠多代杂交和互交,建立稳定表达绿色荧光蛋白的裸鼠。大体解剖观察胸腺生长情况,整体和器官荧光成像验证绿色荧光蛋白的表达情况。以2×106/只的剂量对其皮下腋下接种表达红色荧光蛋白的人类A549肺癌细胞(RFP-A549),通过观测肿瘤生长来验证模型的免疫缺陷性。同时,利用红色荧光标记的肿瘤和绿色宿主鼠,对双色的整体成像效果进行观测。结果构建出系统性表达绿色荧光蛋白的裸鼠,大体解剖可见胸腺缺失。在激发光的激发下,绿色荧光裸鼠全身发出清晰的绿色荧光,脑、心脏、肺脏、肝脏、肾脏,肠胃及胰腺等主要器官可见明显绿色荧光。接种RFP-A549细胞后,成瘤率达到100%,整体动物荧光成像表现出清晰的双色。结论本研究构建出的绿色荧光裸鼠,动物整体可以清晰地表达绿色荧光并具有免疫缺陷性  相似文献   

8.
目的利用绿色荧光小鼠和红色荧光蛋白标记肿瘤细胞,建立荧光标记的小鼠肿瘤模型,并建立活体荧光成像和荧光显微镜成像在整体和细胞水平直接观察肿瘤的技术。方法将小鼠B16黑色素瘤细胞接种到绿色荧光蛋白转基因小鼠皮下,建立GFP小鼠肿瘤模型。以红色荧光蛋白作为标记基因导入小鼠黑色素瘤细胞B16细胞,建立稳定表达红色荧光蛋白的细胞株。将表达红色荧光蛋白B16细胞接种到绿色荧光转基因小鼠皮下,建立双荧光小鼠肿瘤模型。用荧光显微镜和活体荧光成像系统检测小鼠肿瘤的发生发展。结果分别建立了GFP小鼠肿瘤模型和双色荧光小鼠肿瘤模型。利用活体荧光影像仪可以观察双色荧光小鼠模型中受体绿色荧光组织和红色荧光移植肿瘤相互融合。利用荧光显微镜,可以观察到肿瘤内绿色荧光标记的来源于受体小鼠的血管和免疫细胞。经香菇多糖刺激的GFP小鼠肿瘤模型的移植瘤组织中,来源于受体小鼠绿色荧光标记的免疫细胞明显多于经生理盐水刺激的对照小鼠。结论利用绿色荧光小鼠和红色荧光RFP标记肿瘤细胞建立荧光标记的小鼠肿瘤模型,采用活体荧光成像仪和荧光显微镜可在整体和细胞水平直接观察肿瘤的生长以及肿瘤与宿主的相互作用。  相似文献   

9.
An emerging concept is that the mammalian myocardium has the potential to regenerate, but that regeneration might be too inefficient to repair the extensive myocardial injury that is typical of human disease. However, the degree to which stem cells or precursor cells contribute to the renewal of adult mammalian cardiomyocytes remains controversial. Here we report evidence that stem cells or precursor cells contribute to the replacement of adult mammalian cardiomyocytes after injury but do not contribute significantly to cardiomyocyte renewal during normal aging. We generated double-transgenic mice to track the fate of adult cardiomyocytes in a 'pulse-chase' fashion: after a 4-OH-tamoxifen pulse, green fluorescent protein (GFP) expression was induced only in cardiomyocytes, with 82.7% of cardiomyocytes expressing GFP. During normal aging up to one year, the percentage of GFP+ cardiomyocytes remained unchanged, indicating that stem or precursor cells did not refresh uninjured cardiomyocytes at a significant rate during this period of time. By contrast, after myocardial infarction or pressure overload, the percentage of GFP+ cardiomyocytes decreased from 82.8% in heart tissue from sham-treated mice to 67.5% in areas bordering a myocardial infarction, 76.6% in areas away from a myocardial infarction, and 75.7% in hearts subjected to pressure overload, indicating that stem cells or precursor cells had refreshed the cardiomyocytes.  相似文献   

10.
The Connexin-40 (Cx40) gene encodes a gap junction protein that plays an important role in cell-cell communication in cardiomyocytes of the atria and cardiac conduction system and endothelial cells of large arteries. During embryonic development, Cx40 expression is tightly regulated and correlates with progressive ventricular conduction system (VCS) differentiation and vessel function. We have generated Cx40(Cre) mice carrying a CreERT2-IRESmRFP cassette by targeted recombination. In Cx40(Cre) mice, the pattern of expression of RFP is identical to that of the endogenous Cx40 gene and a Cx40(GFP) allele. Using a LacZ-based Cre reporter mouse line, tamoxifen dependent Cre recombination was observed throughout the spatio-temporal profile of Cx40 expression in the VCS and arterial endothelial cells. Cx40(Cre) mice can therefore be used to direct inducible genetic modification in Cx40 expressing cells.  相似文献   

11.
Despite considerable advances in medicine, the incidence of heart failure remains high in patients after myocardial infarction (MI). This study investigated the effects of engrafted early-differentiated cells (EDCs) from mouse embryonic stem cells, with or without transfection of vascular endothelial growth factor (VEGF) cDNA (phVEGF(165)), on cardiac function in postinfarcted mice. EDCs were transfected with green fluorescent protein (GFP) cDNA and transplanted into infarcted myocardium. Compared with the MI mice receiving cell-free medium, cardiac function was significantly improved in the MI mice 6 wk after transplantation of EDCs. Moreover, improvement of heart function was significantly greater in the mice implanted with EDCs overexpressing VEGF (EDCs-VEGF) than with EDCs alone. Frozen sections of infarcted myocardium with EDCs or EDCs-VEGF transplantation showed GFP-positive tissue. The area with positive immunostaining for cardiac troponin I and alpha-myosin heavy chain was larger in injured myocardium with EDCs or EDCs-VEGF transplantation than with medium injection. Transplantation of EDCs or EDCs-VEGF significantly increased the number of blood vessels in the MI area. However, the density of capillaries was significantly higher in the EDCs-VEGF animals than in the EDC mice. Double staining for GFP and connexin-43 was positive in injured myocardium with EDC transplantation. Our data demonstrate that engrafted EDCs or EDCs-VEGF regenerated cardiac tissue and significantly improved cardiac function in postinfarcted hearts. The novel EDCs-VEGF synergistic approach may have an important impact on future cell therapy for patients experiencing MI or heart failure.  相似文献   

12.
Near‐infrared fluorescence (NIRF) imaging by using infrared fluorescent protein (iRFP) gene labelling is a novel technology with potential value for in vivo applications. In this study, we expressed iRFP in mouse cardiac progenitor cells (CPC) by lentiviral vector and demonstrated that the iRFP‐labelled CPC (CPCiRFP) can be detected by flow cytometry and fluorescent microscopy. We observed a linear correlation in vitro between cell numbers and infrared signal intensity by using the multiSpectral imaging system. CPCiRFP injected into the non‐ischaemic mouse hindlimb were also readily detected by whole‐animal NIRF imaging. We then compared iRFP against green fluorescent protein (GFP) for tracking survival of engrafted CPC in mouse ischaemic heart tissue. GFP‐labelled CPC (CPCGFP) or CPC labelled with both iRFP and GFP (CPCiRFP GFP) were injected intramyocardially into mouse hearts after infarction. Three days after cell transplantation, a strong NIRF signal was detected in hearts into which CPCiRFP GFP, but not CPCGFP, were transplanted. Furthermore, iRFP fluorescence from engrafted CPCiRFP GFP was detected in tissue sections by confocal microscopy. In conclusion, the iRFP‐labelling system provides a valuable molecular imaging tool to track the fate of transplanted progenitor cells in vivo.  相似文献   

13.
The tumor microenvironment (TME) is critical for tumor growth and progression. We have previously developed color‐coded imaging of the TME using a green fluorescent protein (GFP) transgenic nude mouse as a host. However, most donor sources of cell types appropriate for study in the TME are from mice expressing GFP. Therefore, a nude mouse expressing red fluorescent protein (RFP) would be an appropriate host for transplantation of GFP‐expressing stromal cells as well as double‐labeled cancer cells expressing GFP in the nucleus and RFP in the cytoplasm, thereby creating a three‐color imaging model of the TME. The RFP nude mouse was obtained by crossing non‐transgenic nude mice with the transgenic C57/B6 mouse in which the β‐actin promoter drives RFP (DsRed2) expression in essentially all tissues. In crosses between nu/nu RFP male mice and nu/+ RFP female mice, the embryos fluoresced red. Approximately 50% of the offspring of these mice were RFP nude mice. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. GFP‐expressing human cancer cell lines, including HCT‐116‐GFP colon cancer and MDA‐MB‐435‐GFP breast cancer were orthotopically transplanted to the transgenic RFP nude mice. These human tumors grew extensively in the transgenic RFP nude mouse. Dual‐color fluorescence imaging enabled visualization of human tumor–host interaction. The RFP nude mouse model should greatly expand our knowledge of the TME. J. Cell. Biochem. 106: 279–284, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
We previously showed that human cardiomyocyte progenitor cells (hCMPCs) injected after myocardial infarction (MI) had differentiated into cardiomyocytes in vivo 3 months after MI. Here, we investigated the short-term (2 weeks) effects of hCMPCs on the infarcted mouse myocardium. MI was induced in immunocompromised (NOD/scid) mice, immediately followed by intramyocardial injection of hCMPCs labelled with enhanced green fluorescent protein (hCMPC group) or vehicle only (control group). Sham-operated mice served as reference. Cardiac performance was measured 2 and 14 days after MI by magnetic resonance imaging at 9.4 T. Left ventricular (LV) pressure-volume measurements were performed at day 15 followed by extensive immunohistological analysis. Animals injected with hCMPCs demonstrated a higher LV ejection fraction, lower LV end-systolic volume and smaller relaxation time constant than control animals 14 days after MI. hCMPCs engrafted in the infarcted myocardium, did not differentiate into cardiomyocytes, but increased vascular density and proliferation rate in the infarcted and border zone area of the hCMPC group. Injected hCMPCs engraft into murine infarcted myocardium where they improve LV systolic function and attenuate the ventricular remodelling process 2 weeks after MI. Since no cardiac differentiation of hCMPCs was evident after 2 weeks, the observed beneficial effects were most likely mediated by paracrine factors, targeting amongst others vascular homeostasis. These results demonstrate that hCMPCs can be applied to repair infarcted myocardium without the need to undergo differentiation into cardiomyocytes.  相似文献   

15.
16.
Msi1 (Musashi 1) is regarded as a marker for neural and intestinal epithelial stem cells. However, it is still unclear whether Msi1‐positive cells derived from mouse embryonic stem cells have the ability to differentiate into neural or intestinal epithelial cells. A pMsi1–GFP (green fluorescent protein) reporter plasmid was constructed in order to sort Msi1‐positive cells out of the differentiated cell population. The GFP‐positive cells (i.e. Msi1‐positive cells) were sorted by FACS and were hypodermically engrafted into the backs of NOD/SCID (non‐obese diabetic/severe combined immunodeficient) mice. The presence of neural and intestinal epithelial cells in the grafts was detected. Msi1 was highly expressed in the GFP‐positive cells, but not in the GFP‐negative cells. The markers for neural cells (Nestin and Tubulin β III) and intestinal epithelial cells [FABP2 (fatty acid binding protein 2), Lyz (lysozyme) and ChA (chromogranin A)] were more highly expressed in the grafts from Msi1‐positive cells than those from Msi1‐negative cells (P<0.05). The grafts from the Msi1‐negative cells contained more mesodermal‐like tissues than those from the Msi1‐positive cells. The pMsi1–GFP vector can be used to sort Msi1‐positive cells from a cell population derived from mouse embryonic stem cells. The Msi1‐positive cells can differentiate into neural and intestinal epithelial‐like cells in vivo.  相似文献   

17.
Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long‐term culture and colony formation of several LV‐labeled mouse melanoma cells showed that promoters derived from mammalian house‐keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase–green fluorescence protein fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP‐labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP‐positive cells can be isolated from the tumors by fluorescence‐activated cell sorter. Pol2‐Luc/GFP labeling, while lower in activity, was more sustainable than FerH‐Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol‐2‐Luc/GFP labeling allows long‐term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models.  相似文献   

18.
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.  相似文献   

19.
The color of mice: in the light of GFP-variant reporters   总被引:7,自引:0,他引:7  
The mouse currently represents the premier model organism for mammalian genetic studies. Over the past decade the production of targeted and transgenic lines of mice has become commonplace, with current technology allowing the creation of mutations at base pair resolution. Such genome modifications are becoming increasingly elaborate and often incorporate gene-based reporters for tagging different cellular populations. Until recently, lacZ, the bacterial beta-galactosidase gene has been the marker of choice for most studies in the mouse. However, over the past 3 years another valuable reporter has emerged, and its attractiveness is reflected by an explosion in its use in mice. Green fluorescent protein (GFP), a novel autofluorescent genetic reporter derived from the bioluminescent jellyfish Aequorea victoria, currently represents a unique alternative to other gene-based reporters in that its visualization is non-invasive and so can be monitored in real-time in vitro or in vivo. It has the added advantage that it can be quantified by, for example, flow cytometry, confocal microscopy, and fluorometric assays. Several mutants of the original wild-type GFP gene that improve thermostability and fluorescence have been engineered. Enhanced GFP is one such variant, which has gained popularity for use in transgenic or targeted mice. Moreover, various GFP spectral variants have also been developed, and two of these novel color variants, enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP), can also be used in mice. Since the spectral profiles of the ECFP and EYFP color variants are distinct and non-overlapping, these two reporters can be co-visualized, and are therefore ideal for in vivo double-labeling or fluorescent energy transfer analyses. The use of GFP and its color variants as reporters provides an unprecedented level of sophistication and represents the next step in mouse genome engineering technology by opening up the possibility of combinatorial non-invasive reporter usage within a single animal.  相似文献   

20.
Mice infected with the neurotropic JHM strain of mouse hepatitis virus (MHV) develop pathological and clinical outcomes similar to patients with the demyelinating disease Multiple Sclerosis (MS). We have shown that transplantation of NSCs into the spinal cords of sick mice results in a significant improvement in both remyelination and in clinical outcome. Cell replacement therapies for the treatment of chronic neurologic diseases are now a reality and in vivo models are vital in understanding the interactions between the engrafted cells and host tissue microenvironment. This presentation provides an adapted method for transplanting cells into the spinal cord of JHMV-infected mice. In brief, we provide a procedure for i) preparation of NSCs prior to transplant, ii) pre-operative care of mice, iii) exposure of the spinal cord via laminectomy, iv) stereotactic injection of NSCs, and iv) post-operative care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号