首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of cDNA libraries derived from the spinal cord with those derived from the visual cortex by means of forward and reverse subtractive hybridization resulted in the cataloguing of 60 genes differentially expressed in the spinal cord. 1. The differentially expressed genes represent a mixture of novel and known sequences with known and unknown protein products. 2. The possibility that the subtraction process was simply overwhelmed by background sequences was significantly reduced by several observations including comparisons between suppression subtractive hybridization (SSH) and mirror orientation selection (MOS). 3. Nearly half of all genes up-regulated in the spinal cord are of myelin origin. 4. Twenty-five percent of all up-regulated clones in the spinal cord versus the visual cortex are for proteolipid protein. 5. Ten percent of all up-regulated clones in spinal cord versus visual cortex are for ferretin heavy chain, which is known to be produced in oligodendroglial cells in the CNS. 6. Two of the up-regulated sequences, proteolipid protein and N-myc down-regulated gene 4, are identified with genes known to directly affect neuron survival. 7. Two of the up-regulated genes, ferritin and transferrin, are indirectly associated with apoptosis through their ability to sequester iron and reduce free radical formation.  相似文献   

2.
From 1,000 randomly selected colonies from cDNA libraries derived from murine spinal cord subtracted against white matter by means of suppression subtractive hybridization, 220 clones were identified as differentially expressed by dot blot analysis. Sequence analysis by the BLAST programming identified 140 unique genes. (1) The percentage of known sequences from myelin and other glial sources was reduced by approximately 75% over previous, similar subtractions employing visual cortex as the driver. (2) Differentially expressed genes tended to reflect existing expectations concerning structure and function of the spinal cord. (3) About 35% of all genes differentially expressed in the spinal cord in this study are also known to be differentially expressed for this structure as tabulated in the UniGene database. (4) About 33% of all genes differentially expressed in the present study are recorded as not present when measured in the spinal cord according to the UniGene database indicating that present techniques are not recording about a third of differentially expressed genes in this structure. (5) About 15% of all differentially expressed genes are for unknown, putative or hypothetical protein products. (6) About 4% of all differentially expressed genes are novel expressed sequence tags for the mouse. The current study demonstrates the importance of reducing the presence of glial associated sequences when comparing brain regions. It is concluded that the persistence of some myelin sequences in the spinal cord when white matter is used as the driver indicates that myelination is more active in this structure than for those areas represented by white matter and corpus callosum.  相似文献   

3.
4.
The myelin proteolipid protein (Plp) gene encodes the most abundant protein found in mature CNS myelin. Expression of the gene is regulated spatiotemporally, with maximal expression occurring in oligodendrocytes during the myelination period of CNS development. Plp gene expression is tightly controlled. Misregulation of the gene in humans can result in the dysmyelinating disorder Pelizaeus-Merzbacher disease, and in transgenic mice carrying a null mutation or extra copies of the gene can result in a variety of conditions, from late onset demyelination and axonopathy, to severe early onset dysmyelination. In this study we have examined the effects of Plp intron 1 DNA in mediating proper developmental expression of Plp-lacZ fusion genes in transgenic mice. Our results reveal the importance of Plp intron 1 sequences in instigating the expected surge in Plp-lacZ gene activity during (and following) the active myelination period of brain development. Transgene expression was also detected in the testis (Leydig cells), however, the presence or absence of Plp intron 1 sequences had no effect on the temporal profile in the testis. Surprisingly, expression of the transgene missing Plp intron 1 DNA was always higher in the testis, as compared to the brain, in all of the transgenic lines generated.  相似文献   

5.
6.
MYELIN PROTEINS FROM DIFFERENT REGIONS OF THE CENTRAL NERVOUS SYSTEM   总被引:10,自引:6,他引:4  
—The protein composition of myelin prepared from specific anatomical regions of the bovine brain and spinal cord was studied by a modification of the method of Gonzalez -Sastre (1970). Spinal cord myelin contained lesser amounts of chloroform-methanol soluble protein and proteolipid protein and had a lower activity of the enzyme 2′,3′-cyclic nucleotide 3′-phosphohydrolase than did myelin from subcortical white matter. There was no difference, however, in the protein composition of myelin from the various levels of the spinal cord. The amino acid composition of both proteolipid and basic protein showed no significant regional differences. Myelin preparations from both brain and spinal cord contained DM-20 protein.  相似文献   

7.
The jimpy mutation of the X-linked proteolipid protein (Plp) gene causes dysmyelination and premature death of the mice. The established phenotype is characterised by severe hypomyelination, increased numbers of dead oligodendrocytes and astrocytosis. The purpose of this study was to define the earliest cellular abnormalities in the cervical spinal cord. We find that on the first and third postnatal days the amount of myelin in jimpy spinal cord is approximately 20% of wild-type. However, the total glial cell density, the number of dead glial cells and the number and distribution of Plp-positive cells, as assessed by in situ hybridization, are similar to wild-type during the first week of life. Immunostaining of cryosections has identified that jimpy spinal cords express on schedule, a variety of antigens associated with mature oligodendrocytes. Dissociated oligodendrocytes, cultured for 18 hours to reflect their in vivo differentiation, express MBP and surface myelin-associated glycoprotein at the same frequency as wild-type. By comparison, the proportion of jimpy oligodendrocytes expressing surface myelin/oligodendrocyte glycoprotein is reduced by approximately 34%. In vivo, however, only a small minority of axons is surrounded by a collar of myelin-associated glycoprotein, suggesting that the majority of jimpy oligodendrocytes fail to make appropriate ensheathment of axons. Although the DM20 isoform is expressed in the embryonic CNS prior to myelin formation, the cellular abnormalities appear to correspond to the time at which the Plp isoform becomes predominant. The results suggest that the primary abnormality in jimpy is the inability of oligodendrocytes to properly associate with, and then ensheath, axons and that oligodendrocyte death compounds, rather than initiates, the established phenotype.  相似文献   

8.
—Incubation of slices of rat central nervous system in Krebs-Ringer bicarbonate buffer produced a lipoprotein fraction which floated on 10·5% sucrose after homogenization of the slices and centrifugation. This fraction was not found after homogenization and centrifugation of fresh tissue and appeared to depend upon incubation. The amount of the light fraction increased in the following order per 100-mg slice: cerebrum < thalamic area < cerebellum < brain stem < spinal cord. The lipid composition of this fraction was similar to that of myelin, but contained a lower protein content compared to myelin of the corresponding area. This fraction was termed ‘dissociated myelin’. Upon incubation of slices a portion of the basic protein was lost from myelin subsequently isolated, and the dissociated fraction was slightly enriched in basic protein. The distribution of myelin protein among the characteristic three groups (basic, proteolipid and high mol. wt.) was quite different in myelin from spinal cord compared to that from other CNS area. Spinal cord myelin contained about 17% protein compared to about 23% in cerebrum, with brain stem myelin intermediate (19%), and the difference appeared to be due to lesser amounts of proteolipid in the caudal areas. The amount of dissociation after incubation was about 3–5 per cent of the total myelin in the cerebral cortex, 10 per cent in the thalamic area, 20 per cent in cerebellum, 35 per cent in the brain stem, and around 45 per cent in spinal cord. The smaller amount of proteolipid protein in spinal cord myelin may result in a deficiency of cohesive forces holding lipids and proteins together, thus causing greater instability and dissociation. Myelin dissociation increased with time of incubation up to 3 h, was augmented by Ca2+, and was substantial at pH 11, reaching a peak at pH 7, then decreased in the acid range. A similar fraction has been isolated previously from fresh CNS tissue made edematous by chronic treatment of rats with triethyl tin. The possible relationship of swelling in the disease process and myelin dissociation are discussed.  相似文献   

9.
The myelin proteolipid protein gene ( Plp1 ) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated – peaking during the active myelination period of CNS development. Previously, we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. Electrophoretic mobility shift assay analysis demonstrated that specific DNA-binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over 20 sequence-specific DNA-binding proteins. Supplementary western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Purα and Purβ rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE.  相似文献   

10.
11.
12.
The central nervous system of the shiverer mouse is known to be severely deficient in myelin. Animals heterozygous for this autosomal-recessive mutation were crossed, and the myelin proteins were examined in the brains and spinal cords of shiverers and unaffected littermates among the offspring. In the brains and spinal cords of nine of the 14 unaffected littermates examined, the quantities of the myelin basic and proteolipid proteins were lower than normal. Furthermore, in the brains of heterozygotes 33 to ~ 150 days old, the myelin basic and proteolipid proteins were reduced in amount, compared to wild-type controls; the myelin basic protein was also present in subnormal amounts in the spinal cords from heterozygous animals at the ages of 17 to 150 days. More severe reductions in the quantities of the myelin proteins were observed in central nervous system tissue from homozygous shiverer mice, and the quantity of the myelin proteolipid protein in the central nervous system of the shiverer mouse, expressed as a ratio to the control value at each age, underwent a developmental decline. In heterozygotes, as well as shiverers, the peripheral nerves were also deficient in the P1 and Pr proteins, which are the same as the basic proteins in rodent central nervous system myelin. The findings regarding heterozygotes suggest that the defective primary gene product in the shiverer mouse could be the myelin basic protein itself or a protein required for a rate-limiting step in the processing of the myelin basic protein.  相似文献   

13.
Abstract: A comprehensive study was carried out to clarify the chemical compositions of spinal cord, cord myelin, and myelin subfractions of multiple sclerosis (MS). The protein compositions of normal-appearing cerebral white matter and cerebral plaque and periplaque tissues were also analyzed for comparison. MS whole cord samples were found to contain higher amounts of water compared with normal samples. The total lipid contents were below normal. Among the individual lipids, cholesterol content remained unchanged, whereas cholesteryl esters appeared increased in MS cords. The acidic phospholipid concentrations were found to be lower than normal. Glycolipids, such as cerebrosides GM4, GM1, and GD1b, which are abundant in myelin, were all decreased. However, the concentrations of GM3 and GD3, which are more characteristic of reactive astrocytes, were highly elevated. The total protein content of MS cord samples was decreased, and the decrease was attributable to the loss of myelin proteins as evidenced by the low recovery of myelin. The concentrations of myelin-specific proteins, such as proteolipid protein and myelin basic protein, were significantly reduced. Other changes in the protein compositions included the accretion of two low molecular weight proteins of approximately 11,000 and 12,000, and the appearance of a periodic acid-Schiff-positive protein with the same electrophoretic mobility as the P0 protein. Analysis of the isolated myelin indicated that it had a grossly normal protein composition. However, the two low molecular weight proteins and the P0 protein appeared to be enriched in an upper-phase cord subtraction. We attribute the appearance of the two low molecular weight proteins to the breakdown of proteolipid protein and/or myelin basic protein as a result of demyelination, and the appearance of P0 to the involvement of PNS myelin. The latter finding provides the first biochemical evidence that in MS cord, remyelination can be achieved in part by invading Schwann cells and/or by the small number of Schwann cells that may be present in the cord.  相似文献   

14.
15.
16.
The myelin proteolipid protein gene (Plp ) is expressed primarily in oligodendrocytes. Yet how the gene remains repressed in nonexpressing cells has not been defined, and potentially could cause adverse effects in an organism if the mechanism for repression was impaired. Previous studies suggest that the first intron contains element(s), which suppress expression in nonexpressing cells, although the identity of these elements within the 8 kb intron was not characterized. Here we report the localization of multiple negative regulatory elements that repress Plp gene expression in nonexpressing cells (+/+ Li). Two of these elements (regions) correspond to those used by Plp expressing cells (N20.1), whilst another acts in a cell type-specific manner (i.e. operational in +/+ Li liver cells, but not N20.1 cells). By gel-shift and DNase I footprinting analyses, the factor(s) that bind to the cell type-specific negative regulatory region appear to be far more abundant in +/+ Li cells than in N20.1 cells. Thus, Plp gene repression is mediated through the combinatorial action of both "general" and cell type-specific negative regulatory elements. Additionally, repression in +/+ Li cells cannot be overcome via an antisilencer/enhancer element, which previously has been shown to function in N20.1 cells.  相似文献   

17.
18.
19.
CNS myelin was isolated from the spinal cord of the African lungfish Protopterus dolloi. Its proteins consisted of (1) two basic proteins (16,000 and 18,500 apparent Mr) that reacted with anti-human CNS myelin basic protein antibodies and (2) a major protein (29,000 apparent Mr) that stained with concanavalin A-horseradish peroxidase and bound to anti-rat CNS myelin proteolipid protein (PLP) antibodies. This dominant 29,000 Mr protein showed no reaction with antibodies against the major bovine PNS myelin glycoprotein P0. Following treatment with endoglycosidase F the 29,000 Mr protein was reduced in size to a 26,000 apparent Mr component that no longer bound concanavalin A but retained the anti-PLP reactivity. These results agree with a concanavalin A-binding oligosaccharide linked through asparagine to a protein backbone of PLP homology. The major 29,000 Mr lungfish CNS myelin protein was therefore termed g-PLP (glycosylated proteolipid protein). This is the first report demonstrating the occurrence of a PLP-cross-reactive protein in CNS myelin of a fish. It attests to the close phylogenetic relationship of lungfishes to amphibians. Amphibians were previously recognized as the oldest class bearing PLP in its CNS myelin.  相似文献   

20.
Paralytic tremor (Plp-pt) is a missense mutation of the myelin proteolipid gene (Plp) in rabbits. The myelin yield in the Plp-pt brain is reduced and the protein and lipid composition of central nervous system (CNS) myelin is abnormal. We studied the intracellular transport of the normal and Plp-pt mutant PLP and DM-20 in transiently transfected Cos-7 cells. While the mutant PLP accumulates in the rough endoplasmic reticulum and does not reach the plasma membrane, the spliced isoform of PLP, mutant DM-20, is normally transported to the cell surface and integrated into the membrane. Analysis of rabbit sciatic nerves revealed that concentration of peripheral nervous system (PNS) myelin proteins is normal in Plp-pt myelin. In the PNS like in the CNS, the level of Plp gene products is subnormal. But this does not affect myelination, in the PNS where PLP, present in low concentration, is not a structural component of compact myelin. The normal level of Plp gene expression in Schwann cells is low and these results suggest that, in the Plp-pt PNS, Schwann cell function is not affected by the deficiency in PLP and/or the impairment of intracellular PLP transport. Special issue dedicated to Dr Marion E. Smith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号