首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cell receptor (TCR) signaling to IkappaB kinase (IKK)/NF-kappaB is controlled by PKCtheta-dependent activation of the Carma1, Bcl10, and Malt1 (CBM) complex. Antigen-induced phosphorylation of Bcl10 has been reported, but its physiological function is unknown. Here we show that the putative downstream kinase IKKbeta is required for initial CBM complex formation. Further, upon engagement of IKKbeta/Malt1/Bcl10 with Carma1, IKKbeta phosphorylates Bcl10 in the C terminus and thereby interferes with Bcl10/Malt1 association and Bcl10-mediated IKKgamma ubiquitination. Mutation of the IKKbeta phosphorylation sites on Bcl10 enhances expression of NF-kappaB target genes IL-2 and TNFalpha after activation of primary T cells. Thus, our data provide evidence that IKKbeta serves a dual role upstream of its classical substrates, the IkappaB proteins. While being essential for triggering initial CBM complex formation, IKKbeta-dependent phosphorylation of Bcl10 exhibits a negative regulatory role in T cell activation.  相似文献   

2.
The Carma1–Bcl10–Malt1 (CBM) complex connects T‐cell receptor (TCR) signalling to the canonical IκB kinase (IKK)/NF (nuclear factor)‐κB pathway. Earlier studies have indicated that the COP9 signalosome (CSN), a pleiotropic regulator of the ubiquitin/26S proteasome system, controls antigen responses in T cells. The CSN is required for the degradation of the NF‐κB inhibitor IκBα, but other molecular targets involved in T‐cell signalling remained elusive. Here, we identify the CSN subunit 5 (CSN5) as a new interactor of Malt1 and Carma1. T‐cell activation triggers the recruitment of the CSN to the CBM complex, and CSN downregulation impairs TCR‐induced IKK activation. Furthermore, the CSN is required for maintaining the stability of Bcl10 in response to T‐cell activation. Taken together, our data provide evidence for a functional link between the evolutionarily conserved CSN and the adaptive immunoregulatory CBM complex in T cells.  相似文献   

3.
We have recently shown that IKK complex plays an important non-genomic role in platelet function, i.e., regulates SNARE machinery-dependent membrane fusion. In this connection, it is well known that MALT1, whose activity is modulated by proteasome, plays an important role in the regulation of IKK complex. Therefore, the present studies investigated the mechanism by which IKK signaling is regulated in the context of the platelet proteasome. It was found that platelets express a functional proteasome, and form CARMA/MALT1/Bcl10 (CBM) complex when activated. Using a pharmacological inhibitor, the proteasome was found to regulate platelet function (aggregation, integrin activation, secretion, phosphatidylserine exposure and changes in intracellular calcium). It was also found to regulate thrombogenesis and physiologic hemostasis. We also observed, upon platelet activation, that MALT1 is ubiquitinated, and this coincides with the activation of the IKK/NF-κB-signaling pathway. Finally, we observed that the proteasome inhibitor blocks CBM complex formation and the interaction of IKKγ and MALT1; abrogates SNARE formation, and the association of MALT1 with TAK1 and TAB2, which are upstream of the CBM complex. Thus, our data demonstrate that MALT1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing platelet signals to the NF-κB pathway.  相似文献   

4.
5.
6.
It has previously been shown that E3 ubiquitin ligase Casitas B-lineage lymphoma-b (Cbl-b) negatively regulates T-cell activation, but the molecular mechanism(s) underlying this inhibition is not completely defined. In this study, we report that the loss of Cbl-b selectively results in aberrant activation of NF-kappaB upon T-cell antigen receptor (TCR) ligation, which is mediated by phosphatidylinositol 3-kinase (PI3-K)/Akt and protein kinase C-theta (PKC-theta). TCR-induced hyperactivation of Akt in the absence of Cbl-b may potentiate the formation of caspase recruitment domain-containing membrane-associated guanylate kinase protein 1 (CARMA1)-B-cell lymphoma/leukemia 10 (Bcl10)-mucosa-associated lymphatic tissue 1(MALT1) (CBM) complex, which appears to be independent of PKC-theta. Cbl-b associates with PKC-theta upon TCR stimulation and regulates TCR-induced PKC-theta activation via Vav-1, which couples PKC-theta to PI3-K and allows it to be phosphorylated. PKC-theta then couples IkappaB kinases (IKKs) to the CBM complex, resulting in the activation of the IKK complex. Therefore, our data provide the first evidence to demonstrate that the down-regulation of TCR-induced NF-kappaB activation by Cbl-b is mediated coordinately by both Akt-dependent and PKC-theta-dependent signaling pathways in primary T cells.  相似文献   

7.
The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.  相似文献   

8.
9.
The Carma1-Bcl10-Malt1 (CBM) complex bridges T-cell receptor (TCR) signalling to the canonical IκB kinase (IKK)/NF-κB pathway. NF-κB activation is triggered by PKCθ-dependent phosphorylation of Carma1 after TCR/CD28 co-stimulation. PKCθ-phosphorylated Carma1 was suggested to function as a molecular scaffold that recruits preassembled Bcl10-Malt1 complexes to the membrane. We have identified the serine-threonine protein phosphatase PP2A regulatory subunit Aα (PPP2R1A) as a novel interaction partner of Carma1. PPP2R1A is associated with Carma1 in resting as well as activated T cells in the context of the active CBM complex. By siRNA-mediated knockdown and in vitro dephosphorylation, we demonstrate that PP2A removes PKCθ-dependent phosphorylation of Ser645 in Carma1, and show that maintenance of this phosphorylation is correlated with increased T-cell activation. As a result of PP2A inactivation, we find that enhanced Carma1 S645 phosphorylation augments CBM complex formation, NF-κB activation and IL-2 or IFN-γ production after stimulation of Jurkat T cells or murine Th1 cells. Thus, our data define PP2A-mediated dephosphorylation of Carma1 as a critical step to limit T-cell activation and effector cytokine production.  相似文献   

10.
11.
Full and productive activation of T lymphocytes relies on the simultaneous delivery of T cell receptor (TCR)- and coreceptor-derived signals. In na?ve T cells engagement of the TCR alone causes anergy, while TCR triggering of preactivated T cells results in activation-induced cell death. Costimulatory signals are prominently mirrored by the activation of NF-kappaB, which needs input from the TCR as well as from coreceptors in order to be fully activated and to fulfil its crucial function in the immune response. Coreceptor-generated signals tightly control the duration and amplitude of the NF-kappaB response. The activation of IkappaB kinase (IKK) complex at the contact zone between a T cell and an antigen-presenting cell offers the unique opportunity to study the spatial organization of IKK activation. Recent studies indicate that coreceptor pathways influence the threshold activities of many signalling mediators and thus act on multiple layers of the NF-kappaB pathway.  相似文献   

12.
Sun L  Deng L  Ea CK  Xia ZP  Chen ZJ 《Molecular cell》2004,14(3):289-301
The CARD domain protein BCL10 and paracaspase MALT1 are essential for the activation of IkappaB kinase (IKK) and NF-kappaB in response to T cell receptor (TCR) stimulation. Here we present evidence that TRAF6 ubiquitin ligase and TAK1 protein kinase mediate IKK activation by BCL10 and MALT1. RNAi-mediated silencing of MALT1, TAK1, TRAF6, and TRAF2 suppressed TCR-dependent IKK activation and interleukin-2 production in T cells. Furthermore, we have reconstituted the pathway from BCL10 to IKK activation in vitro with purified proteins of MALT1, TRAF6, TAK1, and ubiquitination enzymes including Ubc13/Uev1A. We find that a small fraction of BCL10 and MALT1 proteins form high molecular weight oligomers. Strikingly, only these oligomeric forms of BCL10 and MALT1 can activate IKK in vitro. The MALT1 oligomers bind to TRAF6, induce TRAF6 oligomerization, and activate the ligase activity of TRAF6 to polyubiquitinate NEMO. These results reveal an oligomerization --> ubiquitination --> phosphorylation cascade that culminates in NF-kappaB activation in T lymphocytes.  相似文献   

13.
14.
Two cytokine-inducible kinases, IKKalpha and IKKbeta, are components of a 700-kDa kinase complex that specifically phosphorylates IkappaB. Phosphorylation of IkappaB by IKK leads to its ubiquitination and subsequent degradation, resulting in the nuclear translocation of NF-kappaB. The oncogenic protein Tax, encoded by human T-cell leukemia virus type-1 (HTLV-1), stimulates IKK activity to result in constitutive nuclear levels of NF-kappaB. In an attempt to gain insights into the mechanism by which Tax mediates constitutive activation of the NF-kappaB pathway, we analyzed the chromatographic distribution of IKK proteins using cellular extracts prepared from three T lymphocytes either lacking or containing Tax. IKK kinase activity and the distribution of proteins in the IKK complex were characterized. In extracts prepared from cells containing Tax, the activity of both IKKalpha and IKKbeta present in the 700-kDa IKK complex were increased. Surprisingly, cell lines expressing Tax also contained an additional peak of IKKbeta, but not IKKalpha activity, that migrated at 300 kDa rather than at 700 kDa. We noted that extracts containing Tax had extremely low levels of IkappaBbeta, but not IkappaBalpha, and contained predominantly a truncated form of the MAP3K MEKK1. These results suggest that Tax may target several components of the NF-kappaB pathway leading to constitutive activation of this important regulator of cellular gene expression.  相似文献   

15.
Na?ve T helper (Th) cells differentiate in response to antigen stimulation into either Th1 or Th2 effector cells, which are characterized by the secretion of different set of cytokines. Th2 differentiation, which is critical for allergic airway disease, is triggered by signals of the T-cell receptor (TCR) and the cytokines generated during polarization, particularly IL-4. We determine here the potential role of the signaling adapter p62 in T-cell polarization. We report using p62-/- mice and cells that p62 acts downstream TCR activation, and is important for Th2 polarization and asthma, playing a significant role in the control of the sustained activation of NF-kappaB and late synthesis of GATA3 and IL-4 by participating in the activation of the IKK complex.  相似文献   

16.
17.
18.
The T-cell antigen receptor (TCR) α-chain (TCRα) is a type I integral membrane protein that becomes ubiquitinated and targeted to the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway when it fails to assemble into the heteromeric TCR complex. Remarkably, TCRα has a cytosolic tail of only five amino acid residues (i.e. RLWSS), none of which is the conventional ubiquitin acceptor, lysine. Herein we report that substitution of two conserved serine residues in the cytosolic tail of TCRα to alanine decreased ubiquitination, whereas placement of additional serine residues enhanced it. Moreover, replacement of the cytosolic serine residues by other ubiquitinatable residues (i.e. cysteine, threonine, or lysine) allowed ubiquitination to take place. Serine-dependent ubiquitination perfectly correlated with targeting of TCRα for ERAD. We also found that this ubiquitination was mediated by the ER-localized ubiquitin ligase, HRD1. These findings indicate that serine-dependent, HRD1-mediated ubiquitination targets TCRα to the ERAD pathway.  相似文献   

19.
20.
CARMA1 is a central regulator of NF-kappaB activation in lymphocytes. CARMA1 and Bcl10 functionally interact and control NF-kappaB signaling downstream of the T-cell receptor (TCR). Computational analysis of expression neighborhoods of CARMA1-Bcl10MALT 1 for enrichment in kinases identified calmodulin-dependent protein kinase II (CaMKII) as an important component of this pathway. Here we report that Ca(2+)/CaMKII is redistributed to the immune synapse following T-cell activation and that CaMKII is critical for NF-kappaB activation induced by TCR stimulation. Furthermore, CaMKII enhances CARMA1-induced NF-kappaB activation. Moreover, we have shown that CaMKII phosphorylates CARMA1 on Ser109 and that the phosphorylation facilitates the interaction between CARMA1 and Bcl10. These results provide a novel function for CaMKII in TCR signaling and CARMA1-induced NF-kappaB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号