首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanism(s) responsible for beta2-adrenergic receptor-mediated skeletal muscle and cardiac hypertrophy remains undefined. This study examined whether calcium influx through L-type calcium channels contributed to the development of cardiac and skeletal muscle (plantaris; gastrocnemius; soleus) hypertrophy during an 8-day treatment with the beta2-adrenergic receptor agonist clenbuterol. Concurrent blockade of L-type calcium channels with nifedipine did not reverse the hypertrophic action of clenbuterol. Moreover, nifedipine treatment alone resulted in both cardiac and soleus muscle hypertrophy (6% and 7%, respectively), and this effect was additive to the clenbuterol-mediated hypertrophy in the heart and soleus muscles. The hypertrophic effects of nifedipine were not associated with increases in total beta-adrenergic receptor density, nor did nifedipine reverse clenbuterol-mediated beta-adrenergic receptor downregulation in either the left ventricle or soleus muscle. Both nifedipine and clenbuterol-induced hypertrophy increased total protein content of the soleus and left ventricle, with no change in protein concentration. In conclusion, our results support the hypothesis that beta2-adrenergic receptor agonist-induced muscle hypertrophy is mediated by mechanisms other than calcium influx through L-type calcium channels.  相似文献   

3.
Vitamin A deficiency is one of the most common dietary deficiencies in the developing world and is a major health concern where it is associated with increased risk of fetal and infant mortality and morbidity. Early studies in the rat demonstrated that, in addition to respiratory problems, neonates showed evidence of mobility problems in response to moderate vitamin A deficiency. This study investigated whether moderate deficiency of this vitamin plays a role in regulating key skeletal muscle regulatory pathways during development. Thirty female rats were fed vitamin A-moderate (VAM) or vitamin A-sufficient diets from weaning and throughout pregnancy. Fetal and neonatal hindlimb and muscle samples were collected on days 13.5, 15.5, 17.5, and 19.5 of pregnancy and 1 day following birth. Mothers fed the VAM diet had reduced retinol concentrations at all time points studied (P < 0.01), and neonates had reduced relative lung weights (P < 0.01). Fetal weight and survival did not differ between groups but neonatal survival was lower in the VAM group where neonates had increased relative heart weights (P < 0.05). Analysis of myogenic regulatory factor expression and calcineurin signaling in fetuses and neonates demonstrated decreased protein levels of myf5 [50% at 17.5 dg (P < 0.05)], myogenin [70% at birth (P < 0.001)], and myosin heavy chain fast [50% at birth (P < 0.05)] in response to moderate vitamin A deficiency. Overall, these changes suggest that vitamin A status during pregnancy may have important implications for fetal muscle development and subsequent muscle function in the offspring.  相似文献   

4.
High doses of the beta2-adrenergic receptor (AR) agonist clenbuterol can induce necrotic myocyte death in the heart and slow-twitch skeletal muscle of the rat. However, it is not known whether this agent can also induce myocyte apoptosis and whether this would occur at a lower dose than previously reported for myocyte necrosis. Male Wistar rats were given single subcutaneous injections of clenbuterol. Immunohistochemistry was used to detect myocyte-specific apoptosis (detected on cryosections via a caspase 3 antibody and confirmed with annexin V, single-strand DNA labeling, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling). Myocyte apoptosis was first detected at 2 h and peaked 4 h after clenbuterol administration. The lowest dose of clenbuterol to induce cardiomyocyte apoptosis was 1 microg/kg, with peak apoptosis (0.35 +/- 0.05%; P < 0.05) occurring in response to 5 mg/kg. In the soleus, peak apoptosis (5.8 +/- 2%; P < 0.05) was induced by the lower dose of 10 microg/kg. Cardiomyocyte apoptosis was detected throughout the ventricles, atria, and papillary muscles. However, this damage was most abundant in the left ventricular subendocardium at a point 1.6 mm, that is, approximately one-quarter of the way, from the apex toward the base. beta-AR antagonism (involving propranolol, bisoprolol, or ICI 118551) or reserpine was used to show that clenbuterol-induced myocardial apoptosis was mediated through neuromodulation of the sympathetic system and the cardiomyocyte beta1-AR, whereas in the soleus direct stimulation of the myocyte beta2-AR was involved. These data show that, when administered in vivo, beta2-AR stimulation by clenbuterol is detrimental to cardiac and skeletal muscles even at low doses, by inducing apoptosis through beta1- and beta2-AR, respectively.  相似文献   

5.
Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.  相似文献   

6.
Myocyte-specific necrosis in the heart and soleus muscle of adult male Wistar rats was investigated in response to a single subcutaneous injection of the anabolic beta(2)-adrenergic receptor agonist clenbuterol. Necrosis was immunohistochemically detected by administration of a myosin antibody 1 h before the clenbuterol challenge and quantified by using image analysis. Clenbuterol-induced myocyte necrosis occurred against a background of zero damage in control muscles. In the heart, the clenbuterol-induced necrosis was not uniform, being more abundant in the left subendocardium and peaking 2.4 mm from the apex. After position (2.4 mm from the apex), dose (5 mg clenbuterol/kg), and sampling time (12 h) were optimized, maximum cardiomyocyte necrosis was found to be 1.0 +/- 0.2%. In response to the same parameters (i.e., 5 mg of clenbuterol and sampled at 12 h), skeletal myocyte necrosis was 4.4 +/- 0.8% in the soleus. These data show significant myocyte-specific necrosis in the heart and skeletal muscle of the rat. Such irreversible damage in the heart suggests that clenbuterol may be damaging to long-term health.  相似文献   

7.
Erythropoietin (EPO), the cytokine required for erythrocyte production, contributes to muscle progenitor cell proliferation and delay myogenic differentiation. However, the underlying mechanism is not yet fully understood. Here, we report that EPO changes the skeletal myogenic regulatory factor expression program and delays differentiation via induction of GATA-4 and the basic helix-loop-helix TAL1 and that knockdown of both factors promotes differentiation. EPO increases the Sirt1 level, a NAD(+)-dependent deacetylase, and also induces the NAD(+)/NADH ratio that further increases Sirt1 activity. Sirt1 knockdown reduced GATA-4 and TAL1 expression, impaired EPO effect on delayed myogenic differentiation, and the Sirt1 knockdown effect was abrogated when combined with overexpression of GATA-4 or TAL1. GATA-4 interacts with Sirt1 and targets Sirt1 to the myogenin promoter and represses myogenin expression, whereas TAL1 inhibits myogenin expression by decreasing MyoD binding to and activation of the myogenin promoter. Sirt1 was found to bind to the GATA-4 promoter to directly regulate GATA-4 expression and GATA-4 binds to the TAL1 promoter to regulate TAL1 expression positively. These data suggest that GATA-4, TAL1, and Sirt1 cross-talk each other to regulate myogenic differentiation and mediate EPO activity during myogenic differentiation with Sirt1 playing a role upstream of GATA-4 and TAL1. Taken together, our findings reveal a novel role for GATA-4 and TAL1 to affect skeletal myogenic differentiation and EPO response via cross-talk with Sirt1.  相似文献   

8.
Hindlimb unweighting (HLU) has been shown to alter myogenic tone distinctly in arterioles isolated from skeletal muscles composed predominantly of fast-twitch (white gastrocnemius) compared with slow-twitch (soleus) fibers. Based on these findings, we hypothesized that HLU would alter myogenic tone differently in arterioles isolated from distinct fiber-type regions within a single skeletal muscle. We further hypothesized that alterations in myogenic tone would be associated with alterations in voltage-gated Ca(2+) channel current (VGCC) density of arteriolar smooth muscle. After 14 days of HLU or weight bearing (control), first-order arterioles were isolated from both fast-twitch and mixed fiber-type regions of the gastrocnemius muscle, cannulated, and pressurized at 90 cmH(2)O. Mixed gastrocnemius arterioles of HLU rats demonstrated increased spontaneous tone [43 +/- 5% (HLU) vs. 27 +/- 4% (control) of possible constriction] and an approximately twofold enhanced myogenic response when exposed to step changes in intraluminal pressure (10-130 cmH(2)O) compared with control rats. In contrast, fast-twitch gastrocnemius arterioles of HLU rats demonstrated similar levels of spontaneous tone [6 +/- 2% (HLU) vs. 6 +/- 2% (control)] and myogenic reactivity to control rats. Neither KCl-induced contractile responses (10-50 mM KCl) nor VGCC density was significantly different between mixed gastrocnemius arterioles of HLU and control rats. These results suggest that HLU produces diverse adaptations in myogenic reactivity of arterioles isolated from different fiber-type regions of a single skeletal muscle. Furthermore, alterations in myogenic responses were not attributable to altered VGCC density.  相似文献   

9.
10.
Prolonged treatment with the beta(2)-adrenoceptor agonist clenbuterol (1-2 mg. kg body mass(-1). day (-1)) is known to induce the hypertrophy of fast-contracting fibers and the conversion of slow- to fast-contracting fibers. We investigated the effects of administering a lower dose of clenbuterol (250 microgram. kg body mass(-1). day (-1)) on skeletal muscle myosin heavy chain (MyHC) protein isoform content and adenine nucleotide (ATP, ADP, and AMP) concentrations. Male Wistar rats were administered clenbuterol (n = 8) or saline (n = 6) subcutaneously for 8 wk, after which the extensor digitorum longus (EDL) and soleus muscles were removed. We demonstrated an increase of type IIa MyHC protein content in the soleus from approximately 0.5% in controls to approximately 18% after clenbuterol treatment (P < 0.05), which was accompanied by an increase in the total adenine nucleotide pool (TAN; approximately 19%, P < 0.05) and energy charge [E-C = (ATP + 0.5 ADP)/(ATP + ADP + AMP); approximately 4%; P < 0.05]. In the EDL, a reduction in the content of the less prevalent type I MyHC protein from approximately 3% in controls to 0% after clenbuterol treatment (P < 0.05) occurred without any alterations in TAN and E-C. These findings demonstrate that the phenotypic changes previously observed in slow muscle after clenbuterol administration at 1-2 mg. kg body mass(-1). day(-1) are also observed at a substantially lower dose and are paralleled by concomitant changes in cellular energy metabolism.  相似文献   

11.
Overall proteolysis and the activity of skeletal muscle proteolytic systems were investigated in rats 1, 2, or 4 days after adrenodemedullation. Adrenodemedullation reduced plasma epinephrine by 95% and norepinephrine by 35% but did not affect muscle norepinephrine content. In soleus and extensor digitorum longus (EDL) muscles, rates of overall proteolysis increased by 15-20% by 2 days after surgery but returned to normal levels after 4 days. The rise in rates of protein degradation was accompanied by an increased activity of Ca(2+)-dependent proteolysis in both muscles, with no significant change in the activity of lysosomal and ATP-dependent proteolytic systems. In vitro rates of Ca(2+)-dependent proteolysis in soleus and EDL from normal rats decreased by ~35% in the presence of either 10(-5) M clenbuterol, a beta(2)-adrenergic agonist, or epinephrine or norepinephrine. In the presence of dibutyryl cAMP, proteolysis was reduced by 62% in soleus and 34% in EDL. The data suggest that catecholamines secreted by the adrenal medulla exert an inhibitory control of Ca(2+)-dependent proteolysis in rat skeletal muscle, mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.  相似文献   

12.
Clenbuterol is a relatively selective beta2-adrenergic partial agonist that has bronchodilator activity. This drug has been investigated as a potential countermeasure to microgravity- or disuse-induced skeletal muscle atrophy because of presumed anabolic effects. The purpose of this study was to: 1) analyze the anabolic effect of clenbuterol's (-)-R and (+)-S enantiomers (0.2 mg/kg) on muscles (cardiac and skeletal) and other organs; and 2) compare responses of enantiomers to the racemate (0.4 mg/kg and 1.0 mg/kg). Male Sprague Dawley rats were treated with: a) racemic clenbuterol (rac-clenbuterol, 0.4 or 1.0 mg/kg); b) enantiomers [clenbuterol (-)-R or (+)-S]; or c) vehicle (1.0 mL/kg buffered saline). Anabolic activity was determined by measuring tissue mass and protein content. HPLC teicoplanin chiral stationary phase was used to directly resolve racemic clenbuterol to its individual enantiomers. In skeletal muscle, both enantiomers had equal anabolic activity, and the effects were muscle- and anatomic region-specific in magnitude. Although the enantiomers did not affect the ventricular mass to body weight ratio, clenbuterol (+)-S induced a small but significant increase in ventricular mass. Both clenbuterol enantiomers produced significant increases in skeletal muscle mass, while being less active in producing cardiac ventricular muscle hypertrophy than the racemic mixture.  相似文献   

13.
Calorie restriction [CR; 60% of ad libitum (AL) intake] improves insulin-stimulated glucose transport, concomitant with enhanced phosphorylation of Akt. The mechanism(s) for the CR-induced increase in Akt phosphorylation of insulin-stimulated muscle is unknown. The purpose of this study was to determine whether CR increased the ratio of catalytic to regulatory subunits favoring enhanced phosphatidylinositol (PI) 3-kinase signaling, which may contribute to increases in Akt phosphorylation and glucose transport in insulin-stimulated muscles. We measured the PI 3-kinase regulatory (p85alpha/beta, p50alpha, and p55alpha) and catalytic (p110) subunits abundance in skeletal muscle from male F344B/N rats after 8 wk of AL or CR treatment. In CR compared with AL muscles, regulatory isoforms, p50alpha and p55alpha abundance were approximately 40% lower (P < 0.01) with unchanged p85alpha/beta levels. There was no diet-related change in catalytic subunit abundance. Despite lower IRS-1 levels ( approximately 35%) for CR vs. AL, IRS-1-p110 association in insulin-stimulated muscles was significantly (P < 0.05) enhanced by approximately 50%. Downstream of PI 3-kinase, CR compared with AL significantly enhanced Akt serine phosphorylation by 1.5-fold higher (P = 0.01) and 3-O-methylglucose transport by approximately 20% in muscles incubated with insulin. The increased ratio of PI 3-kinase catalytic to regulatory subunits favors enhanced insulin signaling, which likely contributes to greater Akt phosphorylation and improved insulin sensitivity associated with CR in skeletal muscle.  相似文献   

14.
Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21?days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4?mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9?days of treatment, while hypertrophy was observed only in EDL after 9?days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14?days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.  相似文献   

15.
Interleukin-15 (IL-15) has been shown to have anabolic effects on skeletal muscle in rodent studies conducted in vitro and in vivo. The mechanism of IL-15 action on muscle appears to be distinct from that of the well-characterized muscle anabolic factor insulin-like growth factor-I (IGF-I). IL-15 action has not been investigated in a human culture system nor in detail in primary skeletal myogenic cells. The purpose of this study was to compare the effects of IL-15 and IGF-I in primary human skeletal myogenic cells. Accretion of a major myofibrillar protein, myosin heavy chain (MHC), was used as a measure of muscle anabolism. We found that both growth factors induced increases in MHC accretion in primary human skeletal myogenic cultures; however, IL-15 and IGF-I actions were temporally distinct. IL-15 was more effective at stimulating MHC accretion when added to cultures after differentiation of myoblasts had occurred. In contrast, IGF-I was more effective at stimulating MHC accretion when added to cultures prior to differentiation of myoblasts. These results using a human system support recent findings from rodent models which indicate that the primary mode of IGF-I action on skeletal muscle anabolism is through stimulation of myogenic precursor cells, whereas the primary target of IL-15 action is the differentiated muscle fiber. Further, since clinical and experimental studies have shown IGF-I is not effective in preventing skeletal muscle wasting, the distinct mode of action of IL-15 suggests it may be of potential usefulness in the treatment of muscle wasting disorders.  相似文献   

16.
17.
beta-Adrenoceptor agonists are reported to induce skeletal muscle hypertrophy and hence serve as valuable adjunct to the treatment of wasting disorders. In the present study, we attempted to find out whether metabolic and physiologic characteristics of fibres are important in determining skeletal muscle response to clenbuterol (an adrenergic receptor agonist) therapy, as proposed in the treatment of wasting disorders. The treatment of mice with clenbuterol (2 mg/kg body wt for 30 days) resulted in skeletal muscle hypertrophy, more common amongst fast-twitch glycolytic fibres/muscle, with increase in body mass and a parallel rise in muscle mass to body mass ratio. Measurement of fibre diameters in soleus (rich in slow-twitch oxidative fibres), ALD or anterior latissimus dorsi (with a predominance of fast-twitch glycolytic fibres) and gastrocnemius (a mixed-type of muscle) from clenbuterol-treated mice for 30 days revealed noticeable increase in the per cent population of narrow slow-twitch fibre and a corresponding decline in white-type or fast-twitch glycolytic fibres in gastrocnemius and ALD. As revealed by counting of muscle cells in soleus, narrow red fibres declined with corresponding increase in white-type glycolytic fibres population. A significant decline in the succinic dehydrogenase activity was observed, thereby suggesting abnormality in oxidative activity of skeletal muscles in response to clenbuterol therapy.  相似文献   

18.
19.
The aim of this study was to determine the contribution of beta-adrenoceptor activation in the reconstruction of the structural and functional organization of denervated skeletal muscle. beta-agonists, clenbuterol (1.2 mg/kg body weight) and isoproterenol (2 mg/kg body weight), administration (daily oral administration; maximum 7 days) to normal innervated rats as well as denervated animals caused muscle hypertrophy. An increase in mean fiber diameter confirmed this stimulated growth both in normal innervated and denervated rat gastrocnemius muscle. Examination of muscle nuclei from treated but normal innervated rat gastrocnemius exhibited features like large size, active nucleoplasm and an increase in their number per fiber cross section and per mm mean fiber length indicating towards an elevated biosynthetic activity in tissue in the presence of beta adrenoceptor agonists. Administration of drugs to normal innervated animals resulted in an emergence of central muscle nuclei. The hyperactive and enlarged muscle nuclei ultimately organized themselves into unusually elongated nuclear streaks. beta agonist treatment to denervated rats resulted in amelioration of atrophic state of tissue characterized by hypertrophy of muscle fibers thus lending to a restoration of structural organization of tissue. Bizarre shapes of nuclei in denervated muscle tend to recover to that characteristic to normal innervated muscle in presence of clenbuterol and isoproterenol hydrochloride. All observations were confirmed by administering butoxamine, a beta-adrenoceptor antagonist along with beta-agonists. The results suggests that both clenbuterol and isoproterenol hydrochloride are capable of mimicking normal innervation functions in skeletal muscle and thus play important role in the structural and functional reorganization of tissue. Amelioration of denervation atrophy in rat gastrocnemius in the presence of beta-agonists supports this.  相似文献   

20.
To determine whether microvessels in resting or contracting skeletal muscle constrict during baroreceptor activation, vascular diameters were measured in the spinotrapezius muscle of adult rats (n = 12) during occlusion of the common carotid arteries. Neural and myogenic components were distinguished using two types of occlusion: 1) "normal" (arterial pressure was allowed to increase with baroreceptor activation) and 2) "isobaric" (arterial pressure was maintained constant by decreasing blood volume). During normal occlusions, intermediate and small arteriolar diameters decreased in resting and contracting muscle (10-15% and 25-30%, respectively). Large arterioles and all-sized venules distended slightly (approximately 5%) in resting muscle, but diameters were maintained or decreased in contracting muscle. When arterial pressure was maintained constant (isobaric), the microvascular responses to baroreceptor activation in both resting and contracting muscle were essentially eliminated. We conclude that nearly all the arteriolar constriction observed in the spinotrapezius muscle during normal carotid artery occlusion is myogenic in origin, secondary to increased arterial pressure. This pressure-dependent constriction is augmented during skeletal muscle contraction and functional vasodilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号