首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of different isoforms of nitric oxide synthase (NOS) in the gastric mucosal hyperemia, induced by 155 mM luminal hydrochloric acid (pH approximately 0.8) without a barrier breaker, was investigated. Rats were anesthetized with Inactin (120 mg/kg ip), and mice were anesthetized with Forene (2.2% in 40% oxygen gas at 150 ml/min); the gastric mucosa was exteriorized. Gastric mucosal blood flow was measured with laser-Doppler flowmetry (LDF) in rats treated with Nomega-nitro-l-arginine (l-NNA; unspecific NOS inhibitor), l-N6-(1-iminoethyl)lysine [l-NIL; inducible (i) NOS inhibitor], or S-methyl-l-thiocitrulline [SMTC; neuronal (n) NOS inhibitor], 10 mg/kg, followed by 3 mg. kg-1. h-1 iv, in iNOS-deficient (-/-) and nNOS(-/-) mice. mRNA was isolated from the gastric mucosa in iNOS(-/-) and wild-type (wt) mice, and real-time RT-PCR was performed. The effect of 155 mM acid on gastric mucosal permeability was determined by measuring the clearance of 51Cr-EDTA from blood to lumen. LDF increased by 48 +/- 13% during 155 mM HCl luminally, an increase that was abolished by l-NNA, SMTC, or l-NIL. In iNOS wt mice, LDF increased by 33 +/- 8% during luminal acid. The blood flow increase was attenuated substantially in iNOS(-/-) mice. RT-PCR revealed iNOS mRNA expression in the gastric mucosa in the iNOS wt groups. The blood flow increase in response to acid was not abolished in nNOS(-/-) mice (nNOS-sufficient mice, 39 +/- 18%; heterozygous mice, 25 +/- 19%; -/- mice, 19 +/- 7%). Mucosal permeability was transiently increased during 155 mM HCl. The results suggest that iNOS is constitutively expressed in the gastric mucosa and is involved in acid-induced hyperemia, suggesting a novel role for iNOS in gastric mucosal protection.  相似文献   

2.
The role of nitric oxide (NO) in inflammatory bowel diseases has traditionally focused on the inducible form of NO synthase (iNOS). However, the constitutive endothelial (eNOS) and neuronal (nNOS) isoforms may also impact on colitis, either by contributing to the inflammation or by regulating mucosal integrity in response to noxious stimuli. To date, studies examining the roles of the NOS isoforms in experimental colitis have been conflicting, and the mechanisms by which these enzymes exert their effects remain unclear. To investigate and clarify the roles of the NOS isoforms in gut inflammation, we induced trinitrobenzenesulfonic acid colitis in eNOS, nNOS, and iNOS knockout (KO) mice, assessing the course of colitis at early and late times. Both eNOS and iNOS KO mice developed a more severe colitis compared with wild-type mice. During colitis, iNOS expression dramatically increased on epithelial and lamina propria mononuclear cells, whereas eNOS expression remained localized to endothelial cells. Electron and fluorescence microscopy identified bacteria in the ulcerated colonic mucosa of eNOS KO mice, but not in wild-type, iNOS, or nNOS KO mice. Furthermore, eNOS KO mice had fewer colonic goblet cells, impaired mucin production, and exhibited increased susceptibility to an inflammatory stimulus that was subthreshold to other mice. This susceptibility was reversible, because the NO donor isosorbide dinitrate normalized goblet cell numbers and ameliorated subsequent colitis in eNOS KO mice. These results identify a protective role for both iNOS and eNOS during colitis, with eNOS deficiency resulting in impaired intestinal defense against lumenal bacteria and increased susceptibility to colitis.  相似文献   

3.
The effect of inhibiting nitric oxide (NO) synthase (NOS) or enhancing NO on the course of acute pancreatitis (AP) is controversial, in part because three NOS isoforms exist: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). We investigated whether inhibition or selective gene deletion of NOS isoforms modified the initiation phase of caerulein-induced AP in mice and explored whether this affected pancreatic microvascular blood flow (PMBF). We investigated the effects of nonspecific NOS inhibition with N(omega)-nitro-l-arginine (l-NNA; 10 mg/kg ip) or targeted deletion of eNOS, nNOS, or iNOS genes on the initiation phase of caerulein-induced AP in mice using in vivo and in vitro models. Western blot analysis was performed to assess eNOS phosphorylation status, an indicator of enzyme activity, and microsphere studies were used to measure PMBF. l-NNA and eNOS deletion, but not nNOS or iNOS deletion, increased pancreatic trypsin activity and serum lipase during the initiation phase of in vivo caerulein-induced AP. l-NNA and eNOS did not affect trypsin activity in caerulein-hyperstimulated isolated acini, suggesting that nonacinar events mediate the effect of NOS blockade in vivo. The initiation phase of AP in wild-type mice was associated with eNOS Thr(495) residue dephosphorylation, which accompanies eNOS activation, and a 178% increase in PMBF; these effects were absent in eNOS-deleted mice. Thus eNOS is the main isoform influencing the initiation of caerulein-induced AP. eNOS-derived NO exerts a protective effect through actions on nonacinar cell types, most likely endothelial cells, to produce greater PMBF.  相似文献   

4.
Nitric oxide (NO) is a free radical that is largely produced by three isoforms of NO synthase (NOS): neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). NO regulates numerous processes in the gastrointestinal tract; however, the overall role that NO plays in intestinal inflammation is unclear. NO is upregulated in both ulcerative colitis and Crohn's disease as well as in animal models of colitis. There have been conflicting reports on whether NO protects or exacerbates injury in colitis or is simply a marker of inflammation. To determine whether the site, timing, and level of NO production modulate the effect on the inflammatory responses, the dextran sodium sulfate model of colitis was assessed in murine lines rendered deficient in iNOS, nNOS, eNOS, or e/nNOS by targeted gene disruption. The loss of nNOS resulted in more severe disease and increased mortality, whereas the loss of eNOS or iNOS was protective. Furthermore, concomitant loss of eNOS reversed the susceptibility found in nNOS-/- mice. Deficiencies in specific NOS isoforms led to distinctive alterations of inflammatory responses, including changes in leukocyte recruitment and alterations in colonic lymphocyte populations. The present studies indicate that NO produced by individual NOS isoforms plays different roles in modulating an inflammatory process.  相似文献   

5.
Both brain and peripheral nitric oxide (NO) play a role in the control of blood pressure and circulatory homeostasis. Central NO production seems to counteract angiotensin II-induced enhancement of sympathetic tone. The aim of our study was to evaluate NO synthase (NOS) activity and protein expression of its three isoforms--neuronal (nNOS), endothelial NOS (eNOS) and inducible (iNOS)--in two brain regions involved in blood pressure control (diencephalon and brainstem) as well as in the kidney of young adult rats with either genetic (12-week-old SHR) or salt-induced hypertension (8-week-old Dahl rats). We have demonstrated reduced nNOS and iNOS expression in brainstem of both hypertensive models. In SHR this abnormality was accompanied by attenuated NOS activity and was corrected by chronic captopril treatment which prevented the development of genetic hypertension. In salt hypertensive Dahl rats nNOS and iNOS expression was also decreased in the diencephalon where neural structures important for salt hypertension development are located. As far as peripheral NOS activity and expression is concerned, renal eNOS expression was considerably reduced in both genetic and salt-induced hypertension. In conclusions, we disclosed similar changes of NO system in the brainstem (but not in the diencephalon) of rats with genetic and salt-induced hypertension. Decreased nNOS expression was associated with increased blood pressure due to enhanced sympathetic tone.  相似文献   

6.
Impaired vascular responsiveness in sepsis may lead to maldistribution of blood flow in organs. We hypothesized that increased production of nitric oxide (NO) via inducible nitric oxide synthase (iNOS) mediates the impaired dilation to ACh in sepsis. Using a 24-h cecal ligation and perforation (CLP) model of sepsis, we measured changes in arteriolar diameter and in red blood cell velocity (V(RBC)) in a capillary fed by the arteriole, following application of ACh to terminal arterioles of rat hindlimb muscle. Sepsis attenuated both ACh-stimulated dilation and V(RBC) increase. In control rats, arteriolar pretreatment with the NO donors S-nitroso-N-acetylpenicillamine or sodium nitroprusside reduced diameter and V(RBC) responses to a level that mimicked sepsis. In septic rats, arteriolar pretreatment with the "selective" iNOS blockers aminoguanidine (AG) or S-methylisothiourea sulfate (SMT) restored the responses to the control level. The putative neuronal NOS (nNOS) inhibitor 7-nitroindazole also restored the response toward control. At 24-h post-CLP, muscles showed no reduction of endothelial NOS (eNOS), elevation of nNOS, and, surprisingly, no induction of iNOS protein; calcium-dependent constitutive NOS (eNOS+nNOS) enzyme activity was increased whereas calcium-independent iNOS activity was negligible. We conclude that 1) AG and SMT inhibit nNOS activity in septic skeletal muscle, 2) NO could impair vasodilative responses in control and septic rats, and 3) the source of increased endogenous NO in septic muscle is likely upregulated nNOS rather than iNOS. Thus agents released from the blood vessel milieu (e.g., NO produced by skeletal muscle nNOS) could affect vascular responsiveness.  相似文献   

7.
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.  相似文献   

8.
Ischemic preconditioning renders the mouse kidney resistant to subsequent ischemia. Understanding the mechanisms responsible for ischemic preconditioning is important for formulating therapeutic strategies aimed at mimicking protective mechanisms. We report that the resistance afforded by 30 min of bilateral kidney ischemia persists for 12 weeks after preconditioning. The protection is reflected by improved postischemic renal function, reduced leukocyte infiltration, reduced postischemic disruption of the actin cytoskeleton, and reduced postischemic expression of kidney injury molecule-1 (Kim-1). The protection is observed in both BALB/c and C57BL/6J strains of mice. Thirty minutes of prior ischemia increases the expression of inducible nitric-oxide synthase (iNOS) and endothelial NOS (eNOS) and the expression of heat shock protein (HSP)-25 and is associated with increased interstitial expression of alpha-smooth muscle actin (alpha-SMA), an indication of long term postischemic sequelae. Treatment with Nomega-nitro-l-arginine (l-NNA), an inhibitor of NO synthesis, increases kidney susceptibility to ischemia. Gene deletion of iNOS increases kidney susceptibility to ischemia, whereas gene deletion of eNOS has no effect. Pharmacological inhibition of NOS by l-NNA or l-N6-(1-iminoethyl) lysine (l-NIL, a specific inhibitor of iNOS) mitigates the kidney protection afforded by 30 min of ischemic preconditioning. Fifteen minutes of prior ischemic preconditioning, which does not result in the disruption of the actin cytoskeleton, impairment of renal function, increased interstitial alpha-SMA, or increased iNOS or eNOS expression, but does increase HSP-25 expression, partially protects the kidney from ischemia on day 8 via a mechanism that is not abolished by l-NIL treatment. Thus, iNOS is responsible for a significant component of the long term protection afforded the kidney by ischemic preconditioning, which results in persistent renal interstitial disease, but does not explain the preconditioning seen with shorter periods of ischemia.  相似文献   

9.
Nitric oxide (NO) is produced in the vascular endothelium and is a potent vasodilator substance that participates in the regulation of local vascular tone. Exercise causes peculiar changes in systemic and regional blood flow, i.e., an increase of systemic blood flow and a redistribution of local tissue blood flow, by which the blood flow is greatly increased in the working muscles, whereas it is decreased in some organs such as the kidney and intestine. Thus we hypothesized that exercise causes a tissue-specific change of NO production in some internal organs. We studied whether exercise affects expression of NO synthase (NOS) mRNA and protein, NOS activity, and tissue level of nitrite/nitrate (stable end products of NO) in the kidneys (in which blood flow during exercise is decreased) and lungs (in which blood flow during exercise is increased with the increase of cardiac output) of rat. Rats ran on a treadmill for 45 min at a speed of 25 m/min. Immediately after this exercise, kidneys and lungs were quickly removed. Control rats remained at rest during this 45-min period. Expression of endothelial NOS (eNOS) mRNA in the kidneys was markedly lower in exercise rats than in control rats, whereas that in the lungs was significantly higher in exercise rats than in control rats. Western blot analysis confirmed down- and upregulation of eNOS protein in the kidney and lung, respectively, after exercise. On the other hand, neither expression of neuronal NOS (nNOS) mRNA and nNOS protein nor inducible NOS (iNOS) mRNA and iNOS protein in the kidneys and lungs differed between exercise and control rats. NOS activity in the kidney was significantly lower in exercise rats than in control rats, whereas that in the lung was significantly higher in exercise rats than in control rats. On the other hand, the iNOS activity in the kidneys and lungs did not differ between exercise rats and control rats. Tissue nitrite/nitrate level in the kidneys was markedly lower in exercise rats, whereas that in the lungs was significantly higher in exercise rats. The present results show that production of NO is markedly and tissue-specifically changed in the kidney and lung by exercise.  相似文献   

10.
Increased vascular nitric oxide (NO) production has been implicated in the pathogenesis of the hyperdynamic circulation in liver cirrhosis. This study investigated the expression of three isoforms of NO synthase (NOS) in rat cirrhotic livers. Cirrhosis was induced by chronic bile duct ligation (BDL). NOS enzyme activity was assessed by L-citrulline generation. Competitive RT-PCR was performed to detect the mRNA levels of NOS. In situ hybridization was done to localize NOS mRNA. Protein expression of NOS was evaluated by Western blotting and immunohistochemistry. The L-citrulline assay showed that constitutive NOS (cNOS) enzymatic activity was decreased, while inducible NOS (iNOS) activity was increased in BDL livers. Both endothelial NOS (eNOS) and neuronal NOS (nNOS) mRNA were detected in BDL and sham rats, but with enhanced expression in BDL rats. eNOS protein was redistributed with less expression in sinusoidal endothelial cells, but the total levels in liver were not changed. nNOS was induced in hepatocytes of BDL rats, in contrast to only a weak signal observed around some blood vessels in sham livers. Intense mRNA and protein expression of iNOS was induced in livers of BDL rats and was localized in hepatocytes, with no or a negligible amount in control livers. In conclusion, iNOS was induced in cirrhotic liver with its activity increased. In contrast, cNOS activity was impaired, regardless of unchanged eNOS protein levels and enhanced nNOS expression. These results suggest that all three types of NOS have a role in cirrhosis, but their expression and regulation are different.  相似文献   

11.
A central mechanism participates in sympathetic overdrive during insulin resistance (IR). Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity (SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of cardiovascular responses. The aim of this study was to explore whether the NO system in the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drinking water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemicals administered to the PVN. We found an increased plasma norepinephrine level but significantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS) protein expression levels in the PVN of IR rats compared to Control rats. No difference in inducible NOS (iNOS) protein expression was observed between the two groups. In anesthetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly decreased and increased basal SNA, respectively, in both normal and IR rats, but these responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN significantly increased basal SNA in both groups, but these responses were also smaller in IR rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclusion, these data indicate that the decreased protein expression and activity levels of nNOS and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing to a subsequent enhancement in sympathoexcitation during IR.  相似文献   

12.
13.
BACKGROUND: Overproduction of nitric oxide by the inducible form of nitric oxide synthase (iNOS) has been implicated in colitis. Different authors have postulated both toxic and protective effects of nitric oxide (NO) in the pathophysiology of active inflammation. The objective of this study was to examine the role of iNOS in experimental chronic colitis using iNOS-deficient mice. METHODS: For induction of colitis, mice received three cycles of 2% of dextran sodium sulfate (DSS) (M.W. 40,000) treatment in drinking water. The degree of colonic inflammation, leukocyte infiltration, and the expression of cell adhesion molecules were determined. INOS expression and nitrotyrosine were also determined by immunohistochemistry. RESULTS: After DSS treatment, a moderate colitis with marked cell infiltration was observed. Intense expression of iNOS was observed on infiltrating cells as well as on the colonic mucosal epithelium in these animals. In the iNOS-deficient mice, tissue damage was significantly diminished. No iNOS or nitrotyrosine staining was found in iNOS-deficient mice. The number of infiltrating cells and the expression of mucosal adressin cell adhesion molecule-1 were significantly attenuated in the DSS-treated colon of iNOS-deficient mice. CONCLUSION: Induction of iNOS seems to act as a critical toxic effector molecule in the pathogenesis of chronic colonic inflammation.  相似文献   

14.
Age related changes in brain cortex NO metabolism were investigated in mitochondria and cytosolic extracts from youth to adulthood. Decreases of 19%, 40% and 71% in NO production were observed in mitochondrial fractions from 3, 7, and 14 months old rats, respectively, as compared with 1-month-old rats. Decreased nNOS protein expression in 14 months old rats was also observed in mitochondria as compared with the nNOS protein expression in 1-month-old rats. Low levels of eNOS protein expression close to the detection limits and no iNOS protein expression were significantly detected in mitochondrial fraction for both groups of age. NO production in the cytosolic extracts also showed a marked decreasing tendency, showing higher levels than those observed in mitochondrial fractions for all groups of age. In the cytosolic extracts, however, the levels were stabilized in adult animals from 7 to 14 months. nNOS protein expression showed a similar age-pattern in cytosolic extracts for both groups of age, while the protein expression pattern for eNOS was higher expressed in adult rats (14 months) than in young animals. As well as in mitochondrial extracts iNOS protein expression was not significantly detected in cytosolic extracts at any age. RT-PCR assays indicated increased levels of nNOS mRNA in 1-month-old rats as compared with 14 months old rats, showing a similar pattern to that one observed for protein nNOS expression. A different aged pattern was observed for eNOS mRNA expression, being lower in 1-month-old rats as compared with 14 months old animals. iNOS mRNA was very low expressed in both groups of age, showing a residual iNOS mRNA that was not significantly detected. State 3 respiration rates were 78% and 85% higher when succinate and malate-glutamate were used as substrates, respectively, in 14 months rats as compared with 1-month-old rats. No changes were observed in state 4 respiration rates. These results could indicate 1 that nNOS and eNOS mRNA and protein expression can be age-dependent, and confirmed the nNOS origin for the mitochondrial NOS. During rat growth, the respiratory function seems to be modulated by NO produced by the different NOS enzymes: nNOS, eNOS and mtNOS present in the cytosol and in the mitochondria.  相似文献   

15.
Atrial natriuretic peptide (ANP) is an important regulator of blood pressure (BP). One of the mechanisms whereby ANP impacts BP is by stimulation of nitric oxide (NO) production in different tissues involved in BP control. We hypothesized that ANP-stimulated NO is impaired in the kidneys of spontaneously hypertensive rats (SHR) and this contributes to the development and/or maintenance of high levels of BP. We investigated the effects of ANP on the NO system in SHR, studying the changes in renal nitric oxide synthase (NOS) activity and expression in response to peptide infusion, the signaling pathways implicated in the signaling cascade that activates NOS, and identifying the natriuretic peptide receptors (NPR), guanylyl cyclase receptors (NPR-A and NPR-B) and/or NPR-C, and NOS isoforms involved. In vivo, SHR and Wistar-Kyoto rats (WKY) were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg(-1)·min(-1)). NOS activity and endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) NOS expression were measured in the renal cortex and medulla. In vitro, ANP-induced renal NOS activity was determined in the presence of iNOS and nNOS inhibitors, NPR-A/B blockers, guanine nucleotide-regulatory (G(i)) protein, and calmodulin inhibitors. Renal NOS activity was higher in SHR than in WKY. ANP increased NOS activity, but activation was lower in SHR than in WKY. ANP had no effect on expression of NOS isoforms. ANP-induced NOS activity was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in kidney. The renal NOS response to ANP was reduced by G(i) protein and calmodulin inhibitors. We conclude that ANP interacts with NPR-C, activating Ca-calmodulin eNOS through G(i) protein. NOS activation also involves NPR-A/B. The NOS response to ANP was diminished in kidneys of SHR. The impaired NO system response to ANP in SHR participates in the maintenance of high blood pressure.  相似文献   

16.
Nitric oxide (NO) plays a role in the pathophysiology of spinal cord injury (SCI). NO is produced by three types of nitric oxide synthase (NOS) enzymes: The constitutive Ca2+/calmodulin-dependent neuronal NOS (nNOS) and endothelial NOS (eNOS) isoforms, and the inducible calcium-independent isoform (iNOS). During the early stages of SCI, nNOS and eNOS produce significant amounts of NO, therefore, the regulation of their activity and expression may participate in the damage after SCI. In the present study, we used Cyclosporin-A (CsA) to further substantiate the role of Ca-dependent NOS in neural responses associated to SCI. Female Wistar rats were subjected to SCI by contusion, and killed 4 h after lesion. Results showed an increase in the activity of constitutive NOS (cNOS) after lesion, inhibited by CsA (2.5 mg/kg i.p.). Western blot assays showed an increased expression of both nNOS and eNOS after trauma, also antagonized by CsA administration.  相似文献   

17.
We investigated the source(s) for exhaled nitric oxide (NO) in isolated, perfused rabbits lungs by using isozyme-specific nitric oxide synthase (NOS) inhibitors and antibodies. Each inhibitor was studied under normoxia and hypoxia. Only nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) reduced exhaled NO and increased hypoxic pulmonary vasoconstriction (HPV), in contrast to 1400W, an inhibitor of inducible NOS (iNOS), and 7-nitroindazole, an inhibitor of neuronal NOS (nNOS). Acetylcholine-mediated stimulation of vascular endothelial NOS (eNOS) increased exhaled NO and could only be inhibited by L-NAME. Selective inhibition of airway and alveolar epithelial NO production by nebulized L-NAME decreased exhaled NO and increased hypoxic pulmonary artery pressure. Immunohistochemistry demonstrated extensive staining for eNOS in the epithelia, vasculature, and lymphatic tissue. There was no staining for iNOS but moderate staining for nNOS in the ciliated cells of the epithelia, lymphoid tissue, and cartilage cells. Our findings show virtually all exhaled NO in the rabbit lung is produced by eNOS, which is present throughout the airways, alveoli, and vessels. Both vascular and epithelial-derived NO modulate HPV.  相似文献   

18.
Nitric oxide (NO), a mediator of various physiological and pathophysiological processes, is synthesized by three isozymes of nitric oxide synthase (NOS). Potential candidate clinical drugs should be devoid of inhibitory activity against endothelial NOS (eNOS), since eNOS plays an important role in maintaining normal blood pressure and flow. A new series of aminopiperidines as potent inhibitors of iNOS were identified from a HTS lead. From this study, we identified compound 33 as a potent iNOS inhibitor, with >25-fold selectivity over eNOS and 16-fold selectivity over nNOS.  相似文献   

19.
In this study, we evaluated the differential influence of chronic treadmill training (30 m/min, 15% incline, 1 h/day, 5 days/wk) on nitric oxide (NO) production and NO synthase (NOS) isoform expression as well as 3-nitrotyrosine formation (footprint of peroxynitrite) both in limb (gastrocnemius) and ventilatory (diaphragm) muscles. A group of exercise-trained rats and a control group (no training) were examined after a 4-wk experimental period. Exercise training elicited an approximate fourfold rise in gastrocnemius NOS activity and augmented protein expression of the endothelial (eNOS) and neuronal (nNOS) isoforms of NOS to approximately 480% and 240%, respectively. Qualitatively similar but quantitatively smaller elevations in NOS activity and eNOS and nNOS expression were observed in the diaphragm. No detectable inducible NOS (iNOS) protein expression was found in any of the muscle samples. Training increased the intensity of 3-nitrotyrosine only in the gastrocnemius muscle. We conclude that whole body exercise training enhances both limb and ventilatory muscle NO production and that constitutive and not iNOS isoforms are responsible for increased protein tyrosine nitration in trained limb muscles.  相似文献   

20.
Experiments in wild-type (WT; C57BL/6J) mice, endothelial nitric oxide synthase null mutant [eNOS(-/-)] mice, and neuronal NOS null mutant [nNOS(-/-)] mice were performed to determine which NOS isoform regulates renal cortical and medullary blood flow under basal conditions and during the infusion of ANG II. Inhibition of NOS with N(omega)-nitro-l-arginine methyl ester (l-NAME; 50 mg/kg iv) in Inactin-anesthetized WT and nNOS(-/-) mice increased arterial blood pressure by 28-31 mmHg and significantly decreased blood flow in the renal cortex (18-24%) and the renal medulla (13-18%). In contrast, blood pressure and renal cortical and medullary blood flow were unaltered after l-NAME administration to eNOS(-/-) mice, indicating that NO derived from eNOS regulates baseline vascular resistance in mice. In subsequent experiments, intravenous ANG II (20 ng x kg(-1) x min(-1)) significantly decreased renal cortical blood flow (by 15-25%) in WT, eNOS(-/-), nNOS(-/-), and WT mice treated with l-NAME. The infusion of ANG II, however, led to a significant increase in medullary blood flow (12-15%) in WT and eNOS(-/-) mice. The increase in medullary blood flow following ANG II infusion was not observed in nNOS(-/-) mice, in WT or eNOS(-/-) mice pretreated with l-NAME, or in WT mice administered the nNOS inhibitor 5-(1-imino-3-butenyl)-l-ornithine (1 mg x kg(-1) x h(-1)). These data demonstrate that NO from eNOS regulates baseline blood flow in the mouse renal cortex and medulla, while NO produced by nNOS mediates an increase in medullary blood flow in response to ANG II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号