首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synaptic plasticity and nicotine addiction   总被引:17,自引:0,他引:17  
Dani JA  Ji D  Zhou FM 《Neuron》2001,31(3):349-352
Nicotine, the main addictive component of tobacco, activates and desensitizes nicotinic acetylcholine receptors (nAChRs). In that way, nicotine alters normal nicotinic cholinergic functions. Among the myriad of psychopharmacological effects that underlie the addiction process, nicotine influences nAChR participation in synaptic plasticity. This influence has particular importance in the mesocorticolimbic dopamine system, which serves during the reinforcement of rewarding behaviors.  相似文献   

2.
大脑神经回路高度有序的神经元活动是高级脑功能的基础,神经元之间的突触联结是神经回路的关键功能节点。神经突触根据神经元活动调整其传递效能的能力,亦即突触可塑性,被认为是神经回路发育和学习与记忆功能的基础。其异常则可能导致如抑郁症和阿尔茨海默病等精神、神经疾病。将介绍这两种疾病与突触可塑性的关系,聚焦于相关分子和细胞机制以及新的研究、治疗手段等进展。  相似文献   

3.
4.
Pavlovian conditioning has been considered as one of the principal experimental approaches to understanding such complex brain functions as learning and memory. Use-dependent alterations in synaptic efficacy are believed to form the basis for these functions. The algorithm of synapse modification proposed by D. Hebb as early as 1949 is the coincident activation of pre- and postsynaptic neurons. The present review considers the evolution of experimental protocols which were used to reveal the manifestations of Hebb-type plasticity in the synaptic inputs to neocortical and hippocampal neurons. Special attention is focused on long-term modifications of synaptic efficacy in the hippocampus as a possible neuronal mechanism of learning and the role of disinhibition in their development. The effects of various neuromodulators on hippocampal long-term potentiation are considered. It is suggested that along with their involvement in disinhibition processes these substances may control the Hebb-type plasticity through intracellular second messenger systems.  相似文献   

5.
6.
A major goal of learning and memory research is to correlate the function of molecules with the behaviour of organisms. The beautiful laminar structure of the cerebellar cortex lends itself to the study of synaptic plasticity, because its clearly defined patterns of neurons and their synapses form circuits that have been implicated in simple motor behaviour paradigms. The best understood in terms of molecular mechanism is the parallel fibre-Purkinje cell synapse, where presynaptic long-term potentiation and postsynaptic long-term depression and potentiation finely tune cerebellar output. Our understanding of these forms of plasticity has mostly come from the electrophysiological and behavioural analysis of knockout mutant mice, but more recently the knock-in of synaptic molecules with mutated phosphorylation sites and binding domains has provided more detailed insights into the signalling events. The present review details the major forms of plasticity in the cerebellar cortex, with particular attention to the membrane trafficking and intracellular signalling responsible. This overview of the current literature suggests it will not be long before the involvement of the cerebellum in certain motor behaviours is fully explained in molecular terms.  相似文献   

7.
8.
9.
Research carried out by the author and his collaborators, devoted to analysis of the properties and neurophysiological mechanisms of long-term (for several hours) potentiation, is surveyed. Long-term potentiation of focal potentials and unitary responses of strictly hippocampal structures (areas CA1 and CA3) in the unanesthetized rabbit is described. Enhancement of excitatory (EPSPs) and inhibitory (IPSPs) postsynaptic potentials was found after tetanization. No corresponding changes of sensitivity to acetylcholine or acetylcholinesterase activity were found by microiontophoretic and histochemical methods during long-term potentiation. Statistical analysis of EPSPs evoked by microstimulation, based on the quantal hypothesis of synaptic transmission, showed an increase in the number of quanta of transmitter release during potentiation. Long-term potentiation of focal potentials during stimulation of the subcortical white matter in surviving neocortical slices and also long-term potentiation of focal and unitary responses of the sensomotor cortex of the unanesthetized rabbit are described. Potentiation of the "indirect" component of the global response of the pyramidal tract was found. The data suggest the presence of long-term potentiation of monosynaptic neocortical responses. It is concluded that the main mechanism of both hippocampal and neocortical long-term potentiation is increased efficiency of excitatory synapses. It is postulated that synapses modified in this way are used in the formation of memory traces.Brain Institute, All-Union Mental Health Research Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 651–665, September–October, 1984.  相似文献   

10.
Numerous studies in both rats and humans indicate the importance of the amygdala in the acquisition and expression of learned fear. The identification of the amygdala as an essential neural substrate for fear conditioning has permitted neurophysiological examinations of synaptic processes in the amygdala that may mediate fear conditioning. One candidate cellular mechanism for fear conditioning is long-term potentiation (LTP), an enduring increase in synaptic transmission induced by high-frequency stimulation of excitatory afferents. At present, the mechanisms underlying the induction and expression of amygdaloid LTP are only beginning to be understood, and probably involve both theN-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subclasses of glutamate receptors. This article will examine recent studies of synaptic transmission and plasticity in the amygdala in an effort to understand the relationships of these processes to aversive learning and memory.  相似文献   

11.
12.
A mathematical model of the possible physiological and biochemical mechanisms responsible for the changes occurring during binocular development is proposed. The model is based on the mechanisms postulated for the occurrence of well known plastic processes, such as posttetanic potentiation, sensitization and heterosynaptic inhibition. Because all these processes are of presynaptic nature, we have postulated that the plastic processes occurring during development are of the same nature. The factors we have considered in our model are: the transmitter pool size, the mobilization or synthesis of the transmitter, the transmitter release by the physiological stimulus, the neuroendocrine and genetic activity. With this model we have simulated the following phenomena during ocular development: (1) normal binocular development; (2) monocular deprivation, including the effects of reversing the occluded eye; (3) binocular deprivation and recovery; and (4) effects of alternating deprivation on mature binocularity. The model also allows us to explain in a natural way the possible changes occurring during denervation or disuse.  相似文献   

13.
Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.  相似文献   

14.
15.
16.
Philpot BD  Bear MF 《Neuron》2002,33(5):665-667
In this issue of Neuron, record from synaptically coupled pairs of CA3 neurons to closely examine the induction of synaptic depression at a small number of identified synapses. The authors provide convincing evidence that the activation history of a synapse determines both the ability of a synapse to depress and the mechanism of depression.  相似文献   

17.
Synaptic plasticity in cortical systems.   总被引:25,自引:0,他引:25  
Recent studies indicate that synapse addition and/or loss is associated with different types of learning. Other factors influencing synaptogenesis and synapse loss include neurotrophins, hormones, and the induction of long-term potentiation. An emerging view of synaptic plasticity suggests that local neurotrophin action and synaptically associated protein synthesis may promote synaptic remodelling and changes in receptor expression or activation.  相似文献   

18.
突触的可塑性与学习,记忆机制   总被引:11,自引:0,他引:11  
位于哺乳动物海马、小脑皮层的不同类型的可塑性突触,分别具有突触传递的长时程强化(LTP)或抑制(LTD)现象,它们可能是某些经典条件反射形成的基础。以LTD型突触为记忆装置的小脑局部神经网络,具有典型的适应控制能力。突触可塑性的另一类表现是突触前纤维长芽,有证据表明,伴随大脑—红核系统条件反射的建立,在红核神经元胞体附近有新的突触形成,这可能是长期记忆的基础。  相似文献   

19.
Fox K 《Current biology : CB》2003,13(4):R143-R145
In a neuron's dendritic spine, the location of CaMKII is controlled by a number of interacting factors, including its ability to bind calcium/calmodulin, its phosphorylation state and the synthesis of new subunits in the dendrites.New studies have shown that the exact location of CaMKII is crucial for the form and endurance of synaptic plasticity.  相似文献   

20.
Zhu J  Cao GF  Dang YH  Chen T 《生理科学进展》2011,42(6):413-418
不计后果的药物渴求和滥用是药物成瘾的一个显著特征。药物滥用可以诱导行为学和心理学持续性改变的发生,这些持续性改变由相关神经通路(尤其是奖赏系统)神经结构的可塑性变化所引起。本文综述了安非他明、可卡因、尼古丁和吗啡等药物诱发的相关脑区的神经可塑性改变以及引起这些改变的可能原因。药物成瘾诱发的神经结构可塑性改变反映了相关神经系统突触连接的重塑,这些重塑改变该系统的功能,由此便产生了药物滥用的一系列后遗症状———包括成瘾。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号