首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse corneal micropocket assay is a robust and quantitative in vivo assay for evaluating angiogenesis. By using standardized slow-release pellets containing specific growth factors that trigger blood vessel growth throughout the naturally avascular cornea, angiogenesis can be measured and quantified. In this assay the angiogenic response is generated over the course of several days, depending on the type and dose of growth factor used. The induction of neovascularization is commonly triggered by either basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). By combining these growth factors with sucralfate and hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate))) and casting the mixture into pellets, they can be surgically implanted in the mouse eye. These uniform pellets slowly-release the growth factors over five or six days (bFGF or VEGF respectively) enabling sufficient angiogenic response required for vessel area quantification using a slit lamp. This assay can be used for different applications, including the evaluation of angiogenic modulator drugs or treatments as well as comparison between different genetic backgrounds affecting angiogenesis. A skilled investigator after practicing this assay can implant a pellet in less than 5 min per eye.  相似文献   

2.
Cao R  Lim S  Ji H  Zhang Y  Yang Y  Honek J  Hedlund EM  Cao Y 《Nature protocols》2011,6(6):817-826
This protocol describes a powerful in vivo method to quantitatively study the formation of new lymphatic vessels in the avascular cornea without interference of pre-existing lymphatics. Implantation of 100 ng of lymphangiogenic factors such as vascular endothelial growth factor (VEGF)-A, VEGF-C or fibroblast growth factor-2, together with slow-release polymers, into a surgically created micropocket in the mouse cornea elicits a robust lymphangiogenic response. Newly formed lymphatic vessels are detected by immunohistochemical staining of the flattened corneal tissue with lymphatic endothelial-specific markers such as lymphatic vessel endothelial hyaluronan receptor-1; less-specific markers such as vascular endothelial growth factor receptor 3 may also be used. Lymphatic vessel growth in relation to hemangiogenesis can be readily detected starting at day 5 or 6 after pellet implantation and persists for ~14 d. This protocol offers a unique opportunity to study the mechanisms underlying lymphatic vessel formation, remodeling and function.  相似文献   

3.
4.
Genetic heterogeneity of angiogenesis in mice.   总被引:20,自引:0,他引:20  
Many diseases, including cancer, are dependent on the growth of new blood vessels, a process known as angiogenesis. Differences in an individual's ability to grow new blood vessels may influence the rate of progression of these diseases. Here we show that different strains of inbred mice have an approximately 10-fold range of response to growth factor-stimulated angiogenesis in the corneal micropocket assay. The in vitro migratory activity of endothelial cells from aortic rings of selected strains correlated with the in vivo responsiveness. Further, a differential sensitivity to angiogenesis inhibitors was seen between strains, with one strain demonstrating resistance to both TNP-470 and thalidomide. These results suggest the presence of genetic factors that control individual angiogenic potential.  相似文献   

5.
We have previously demonstrated that halofuginone, a low molecular weight quinazolinone alkaloid, is a potent inhibitor of collagen alpha1(I) and matrix metalloproteinase 2 (MMP-2) gene expression. Halofuginone also effectively suppresses tumor progression and metastasis in mice. These results together with the well-documented role of extracellular matrix (ECM) components and matrix degrading enzymes in formation of new blood vessels led us to investigate the effect of halofuginone on the angiogenic process. In a variety of experimental system, representing sequential events in the angiogenic cascade, halofuginone treatment resulted in profound inhibitory effect. Among these are the abrogation of endothelial cell MMP-2 expression and basement membrane invasion, capillary tube formation, and vascular sprouting, as well as deposition of subendothelial ECM. The most conclusive anti-angiogenic activity of halofuginone was demonstrated in vivo (mouse corneal micropocket assay) by showing a marked inhibition of basic fibroblast growth factor (bFGF) -induced neovascularization in response to systemic administration of halofuginone, either i.p. or in the diet. The ability of halofuginone to interfere with key events in neovascularization, together with its oral bioavailability and safe use as an anti-parasitic agent, make it a promising drug for further evaluation in the treatment of a wide range of diseases associated with pathological angiogenesis.  相似文献   

6.
Erucamide (13-docosenamide) was found to be the major bovine mesentery angiogenic lipid as assessed by chorioallantoic membrane (CAM) assay. Two micrograms of this lipid caused angiogenesis in the assay. Angiogenic activity of this naturally occurring lipid was also found by rat corneal micropocket and mouse dorsal air-sac assays. Specificity of the chemical structure which elicited activity was low, however. The mechanism of angiogenic activity is unknown and this lipid does not promote proliferation of endothelial cells or induce inflammatory effects.  相似文献   

7.
R R Lobb  E M Alderman  J W Fett 《Biochemistry》1985,24(19):4969-4973
The angiogenic capacity of the class 1 heparin-binding growth factor from bovine brain, an anionic endothelial cell mitogen of Mr 16 000, has been evaluated. Its ability to induce the growth of new blood vessels has been assessed by means of two established assay systems. On the embryonic chick chorioallantoic membrane dose-response studies demonstrate that 160 ng (10 pmol) of mitogen is required to induce angiogenesis in greater than 50% of the eggs within 72 h. In the presence of 1 unit of exogenous heparin only 40 ng of mitogen (2.5 pmol) is needed to induce a similar response. Moreover, this occurs within 48 h, indicating that heparin also augments the angiogenic response by enhancing the rate of induction of angiogenesis. Eighty nanograms (5 pmol) of mitogen also induces the ingrowth of new blood vessels into the rabbit cornea, both in the presence and in the absence of heparin. These results establish that the class 1 heparin-binding growth factor from bovine brain is an angiogenesis factor. Importantly, the neovascularization induced by this angiogenesis factor is enhanced by heparin. The mechanistic implications for neovascularization under certain normal and pathological conditions are discussed.  相似文献   

8.
Human mast cells (MCs) are divided in two types depending on the expression of tryptase and chymase in their granules. Literature data indicate that both tryptase and chymase are angiogenic, but there is currently no evidence of their direct angiogenic activity in vivo. In this study, we have investigated the capacity of tryptase and chymase to promote vasoproliferation in chick embryo chorioallantoic membrane (CAM), a well established in vivo assay to study angiogenesis and anti-angiogenesis. The results showed that both tryptase and chymase stimulate angiogenesis and that the response is similar to that obtained with vascular endothelial growth factor (VEGF), a well-known angiogenic cytokine, and confirm the angiogenic activity of these two proteases stored in MC granules.  相似文献   

9.
10.
Eosinophils play a crucial role in allergic reactions and asthma. They are also involved in responses against parasites, in autoimmune and neoplastic diseases, and in fibroses. There is increasing evidence that angiogenesis plays an important role in these processes. Since eosinophils are known to produce angiogenic mediators, we have hypothesized a direct contribution of these cells to angiogenesis. The effect of human peripheral blood eosinophil sonicates on rat aortic endothelial cell proliferation (in vitro), rat aorta sprouting (ex vivo) and angiogenesis in the chick embryo chorioallantoic membrane (in vivo) have been investigated. To determine whether eosinophil-derived vascular endothelial growth factor influences the eosinophil pro-angiogenic activity, eosinophil sonicates were incubated with anti-vascular endothelial growth factor antibodies and then added to the chorioallantoic membrane. Vascular endothelial growth factor mRNA expression and vascular endothelial growth factor receptor density on the endothelial cells were also evaluated. Eosinophils were found to enhance endothelial cell proliferation and to induce a strong angiogenic response both in the aorta rings and in the chorioallantoic membrane assays. Pre-incubation of eosinophil sonicates with anti-vascular endothelial growth factor antibodies partially reduced the angiogenic response of these cells in the chorioallantoic membrane. Eosinophils also increased vascular endothelial growth factor mRNA production on endothelial cells. Eosinophils are able to induce angiogenesis and this effect is partially mediated by their pre-formed vascular endothelial growth factor. This strongly suggests an important role of eosinophils in angiogenesis-associated diseases such as asthma.  相似文献   

11.
A normal cornea is clear of vascular tissues. However, blood vessels can be induced to grow and survive in the cornea when potent angiogenic factors are administered 1. This uniqueness has made the cornea pocket assay one of the most used models for angiogenesis studies. The cornea composes multiple layers of cells. It is therefore possible to embed a pellet containing the angiogenic factor of interest in the cornea to investigate its angiogenic effect 2,3. Here, we provide a step by step demonstration of how to (I) produce the angiogenic factor-containing pellet (II) embed the pellet into the cornea (III) analyze the angiogenesis induced by the angiogenic factor of interest. Since the basic fibroblast growth factor (bFGF) is known as one of the most potent angiogenic factors 4, it is used here to induce angiogenesis in the cornea.Download video file.(38M, mov)  相似文献   

12.
Angiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans. Our efforts to dissect the complexity of the genetic diversity that regulates angiogenesis have used laboratory animals due to the availability of genome sequence for many species and the ability to perform high volume controlled breeding. Using the murine corneal micropocket assay, we have observed more than ten-fold difference in angiogenic responsiveness among various mouse strains. This degree of difference is observed with either bFGF or VEGF induced corneal neovascularization. Ongoing mapping studies have identified multiple loci that affect angiogenic responsiveness in several mouse models. In this study, we used F2 intercrosses between C57BL/6J and the 129 substrains 129P1/ReJ and 129P3/J, as well as the SJL/J strain, where we have identified new QTLs that affect angiogenic responsiveness. In the case of AngFq5, on chromosome 7, congenic animals were used to confirm the existence of this locus and subcongenic animals, combined with a haplotype-based mapping approach that identified the pink-eyed dilution mutation as a candidate polymorphism to explain AngFq5. The ability of mutations in the pink-eyed dilution gene to affect angiogenic response was demonstrated using the p-J allele at the same locus. Using this allele, we demonstrate that pink-eyed dilution mutations in Oca2 can affect both bFGF and VEGF-induced corneal angiogenesis.  相似文献   

13.
The AG73 peptide (RKRLQVQLSIRT, mouse laminin alpha 1 chain 2719-2730) promotes cell adhesion and tumor metastasis, and interacts with transmembrane syndecan proteoglycans. Here, we demonstrate AG73 peptide angiogenic activity using in vitro, ex vivo, and in vivo models. AG73 induced murine endothelial cell (SVEC4-10) tube formation on Cultrex Basement Membrane Extract (Cultrex BME) and stimulated sprouting of aortic rings. None of the homologous sequences from the laminin alpha2, alpha3, alpha4, or alpha5 chains was as active as AG73 in promoting sprouting formation. AG73 also mediated angiogenesis in the chick chorioallantonic membrane (CAM) assay. Using subcutaneously injected Cultrex BME supplemented with AG73, we observed a large angiogenic response. Furthermore, AG73-conjugated to a chitosan membrane promoted a strong angiogenic response in the CAM assay. These results indicate that the AG73 peptide is a potent syndecan-binding angiogenesis stimulator and may be useful for therapeutic application to treat ischemic injuries.  相似文献   

14.
Matrix proteases play a critical role in cell invasion and migration, including the process of angiogenesis. The ability of specific factors to induce angiogenic responses correlates with their stimulation of matrix protease synthesis and release. Using an in vivo angiogenesis assay, the endothelial cell response to known angiogenic factors, basic fibroblast growth factor (bfGF) and adipocyte conditioned medium, was blocked by an inhibitor of matrix metalloproteinase activity, TIMP-1. The TIMP effect was mediated, at least in part, through the inhibition of endothelial cell migration, as determined by the ability of TIMP to block chemotaxis in a Boyden chamber assay. These results indicate that the inhibition of migration is a direct effect on the endothelial cells and does not require accessory cells. An additional observation was that the RNA levels for TIMP were significantly reduced in differentiated adipocytes, compared to undifferentiated F442A controls. Therefore, the acquisition of an angiogenic phenotype may involve not only the induction of positive factors, but also the suppression of angiogenesis inhibitors. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Embryonic mouse kidneys induce angiogenesis when transplanted on the quail chorioallantoic membrane (Ekblom, P., H. Sariola, M. Karkinen, and L. Saxén, 1982, Cell Differ., 11:35-39). In these experiments all blood vessels were derived from the quail host, suggesting that kidney endothelium is derived from outside blood vessels. We have now analyzed whether kidney angiogenesis is regulated by kidney-derived soluble factors that stimulate the growth of new blood vessels. In the rabbit cornea, 11-d embryonic kidneys induced angiogenesis, whereas uninduced 11-d kidney mesenchymes did not. To characterize and purify this activity from an embryonic organ, we dissected between 600 and 1,000 14-17-d-old embryonic mouse kidneys for each purification experiment. Growth factor activity for capillary endothelial cells was found to bind to heparin-Sepharose and eluted at 0.9-1.1 M sodium chloride. Gel filtration revealed a molecular weight of 16,000-20,000 of this factor. A major 18,000-mol-wt band was seen after gel electrophoresis and silver staining of partially purified growth factor material. The chromatographed factor is mitogenic for endothelial cells but not for smooth muscle cells and stimulates angiogenesis in vivo in the rabbit cornea. Adult kidneys contained two heparin-binding endothelial cell growth factors. The differentiation-dependent production of an angiogenesis factor by the embryonic kidney suggests an important role of angiogenesis in organogenesis.  相似文献   

16.
In this study we investigated the property of a new medical substance, in the form of a gel compound containing four aminoacids (glycine, leucine, proline, lysine) and sodium hyaluronate (AMINOGAM), to accelerate the wound healing process of the soft oral tissues and to promote angiogenesis in vivo in the vascular proliferation in chick embryo chorioallantoic membrane (CAM) assay. Furthermore, we investigated the capacity of AMINOGAM to induce the expression of an angiogenic cytokine, namely vascular endothelial growth factor (VEGF) in human fibroblasts in vitro. Results showed that AMINOGAM promoted wound healing in post-surgical wounds (after teeth extraction, oral laser surgery with secondary healing without direct suture of the surgical wound, and after dental implant insertion). Stimulated angiogenesis in vivo in the CAM assay and the response was similar to that obtained with vascular endothelial growth factor, a well-known angiogenic cytokine, tested in the same assay, and confirmed by clinical outcomes, which showed reduction of the healing time of oral soft tissues after three different kinds of surgery and also the absence of post-operative infections.  相似文献   

17.
We have investigated the angiogenic effects of basic fibroblast growth factor following its implantation in slow release beads under the kidney capsule. The presence of basic fibroblast growth factor in the subcapsular space induced a marked angiogenic response maximal at 1 microgram dose per kidney. Histological examination at the site of treatment failed to reveal evidence of an inflammatory response, thus supporting the observation that basic fibroblast growth factor alone can stimulate in vivo neovascularization. Beads pretreated with saline or with human growth hormone had no angiogenic effect. Because of the readily accessible location in the retroperitoneal space, the ease of drug delivery, and the marked vascular proliferation seen in response to FGF, our results suggest that the kidney capsule is an excellent model for study of the physiological role played by FGF and related peptides in promoting angiogenesis in vivo.  相似文献   

18.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor or vasculotropin, is a recently characterized endothelial-specific mitogen which is angiogenic in vivo. Here we demonstrate that VEGF is angiogenic in vitro: when added to microvascular endothelial cells grown on the surface of three-dimensional collagen gels, VEGF induces the cells to invade the underlying matrix and to form capillary-like tubules, with an optimal effect at approximately 2.2nM (100ng/ml). When compared to basic fibroblast growth factor (bFGF) at equimolar (0.5nM) concentrations, VEGF was about half as potent. The most striking effect was seen in combination with bFGF: when added simultaneously, VEGF and bFGF induced an in vitro angiogenic response which was far greater than additive, and which occurred with greater rapidity than the response to either cytokine alone. These results demonstrate that like bFGF, VEGF induces an angiogenic response via a direct effect on endothelial cells, and that by acting in concert, these two cytokines have a potent synergistic effect on the induction of angiogenesis in vitro. We suggest that the synergism between VEGF and bFGF plays an important role in the control of angiogenesis in vivo.  相似文献   

19.
Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar‐free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta‐adrenoceptors (β‐AR) are G protein‐coupled receptors (GPCRs) expressed on all skin cell‐types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β‐AR‐mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β‐AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)‐dependent and protein kinase A (PKA)‐independent mechanisms as demonstrated through use of an EPAC agonist that auto‐inhibited the cAMP‐mediated β‐AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β‐AR activation reduced pro‐angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β‐AR‐mediated autocrine and paracrine anti‐angiogenic mechanisms. In more complex environments, β‐AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β‐AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β‐AR agonists could be promising anti‐angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

20.
Here we provide a protocol for quantitative three-dimensional ex vivo mouse aortic ring angiogenesis assays, in which developing microvessels undergo many key features of angiogenesis over a timescale similar to that observed in vivo. The aortic ring assay allows analysis of cellular proliferation, migration, tube formation, microvessel branching, perivascular recruitment and remodeling-all without the need for cellular dissociation-thus providing a more complete picture of angiogenic processes compared with traditional cell-based assays. Our protocol can be applied to aortic rings from embryonic stage E18 through to adulthood and can incorporate genetic manipulation, treatment with growth factors, drugs or siRNA. This robust assay allows assessment of the salient steps in angiogenesis and quantification of the developing microvessels, and it can be used to identify new modulators of angiogenesis. The assay takes 6-14 d to complete, depending on the age of the mice, treatments applied and whether immunostaining is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号