首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion   总被引:2,自引:0,他引:2  
The plant hormone auxin controls numerous aspects of plant growth and development by regulating the expression of hundreds of genes. SMALL AUXIN UP RNA (SAUR) genes comprise the largest family of auxin-responsive genes, but their function is unknown. Although prior studies have correlated the expression of some SAUR genes with auxin-mediated cell expansion, genetic evidence implicating SAURs in cell expansion has not been reported. The Arabidopsis SAUR19, SAUR20, SAUR21, SAUR22, SAUR23, and SAUR24 (SAUR19-24) genes encode a subgroup of closely related SAUR proteins. We demonstrate that these SAUR proteins are highly unstable in Arabidopsis. However, the addition of an N-terminal GFP or epitope tag dramatically increases the stability of SAUR proteins. Expression of these stabilized SAUR fusion proteins in Arabidopsis confers numerous auxin-related phenotypes indicative of increased and/or unregulated cell expansion, including increased hypocotyl and leaf size, defective apical hook maintenance, and altered tropic responses. Furthermore, seedlings expressing an artificial microRNA targeting multiple members of the SAUR19-24 subfamily exhibit short hypocotyls and reduced leaf size. Together, these findings demonstrate that SAUR19-24 function as positive effectors of cell expansion. This regulation may be achieved through the modulation of auxin transport, as SAUR gain-of-function and loss-of-function seedlings exhibit increased and reduced basipetal indole-3-acetic acid transport, respectively. Consistent with this possibility, SAUR19-24 proteins predominantly localize to the plasma membrane.  相似文献   

12.
13.
14.
When plant cells are under environmental stress, several chemically distinct reactive oxygen species (ROS) are generated simultaneously in various intracellular compartments and these can cause oxidative damage or act as signals. The conditional flu mutant of Arabidopsis, which generates singlet oxygen in plastids during a dark-to-light transition, has allowed the biological activity of singlet oxygen to be determined, and the criteria to distinguish between cytotoxicity and signalling of this particular ROS to be defined. The genetic basis of singlet-oxygen-mediated signalling has been revealed by the mutation of two nuclear genes encoding the plastid proteins EXECUTER (EX)1 and EX2, which are sufficient to abrogate singlet-oxygen-dependent stress responses. Conversely, responses due to higher cytotoxic levels of singlet oxygen are not suppressed in the ex1/ex2 background. Whether singlet oxygen levels lower than those that trigger genetically controlled cell death activate acclimation is now under investigation.  相似文献   

15.
16.
The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light.  相似文献   

17.
Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.  相似文献   

18.
19.
Faba beans were grown under various shading treatments at densities of 20 and 60 plants m-2. The amount of PAR absorbed by each treatment was estimated from measured leaf area index. The conversion factor (E, g MJ-1) relating dry matter production to absorbed PAR increased as shading increased. Application or removal of shade changed E rapidly, though there was some evidence for an increased value of ? persisting after removal of shade. Differences in dry matter production between the two years were due to as much to differences in ? as to changes in the amount of light absorbed. Increased plant density increased PAR absorbed but hardly affected e.  相似文献   

20.
In order to get a better understanding of the role of protease-activated receptor 2 (PAR2) in type 2 helper T (Th2) cell responses against Trichinella spiralis infection, we analyzed Th2 responses in T. spiralis-infected PAR2 knockout (KO) mice. The levels of the Th2 cell-secreted cytokines, IL-4, IL-5, and IL-13 were markedly reduced in the PAR2 KO mice as compared to the wild type mice following infection with T. spiralis. The serum levels of parasite-specific IgE increased significantly in the wild type mice as the result of T. spiralis infection, but this level was not significantly increased in PAR2 KO mice. The expression level of thymic stromal lymphopoietin, IL-25, and eotaxin gene (the genes were recently known as Th2 response initiators) of mouse intestinal epithelial cells were increased as the result of treatment with T. spiralis excretory-secretory proteins. However, the expression of these chemokine genes was inhibited by protease inhibitor treatments. In conclusion, PAR2 might involve in Th2 responses against T. spiralis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号