首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Epstein-Barr virus (EBV) DNA polymerase catalytic subunit, BALF5 gene product, possesses an intrinsic 3'-to 5' proofreading exonuclease activity in addition to 5'-to-3' DNA polymerase activity (T. Tsurumi, A. Kobayashi, K. Tamai, T. Daikoku, R. Kurachi, and Y. Nishiyama, J. Virol. 67:4651-4658, 1993). The exonuclease hydrolyzed both double-and single-stranded DNA substrates with 3'-to-5' directionality, releasing deoxyribonucleoside 5'-monophosphates. The double-strand exonucleolytic activity catalyzed by the BALF5 polymerase catalytic subunit was very sensitive to high ionic strength, whereas the single-strand exonucleolytic activity was moderately resistant. The addition of the BMRF1 polymerase accessory subunit to the reaction enhanced the double-strand exonucleolytic activity in the presence of high concentrations of ammonium sulfate (fourfold stimulation at 75 mM ammonium sulfate). Optimal stimulation was obtained when the molar ratio of BMRF1 protein to BALF5 protein was 2 and higher, identical to the values required for reconstituting the optimum DNA polymerizing activity (T. Tsurumi, T. Daikoku, R. Kurachi, and Y. Nishiyama, J. Virol. 67:7648-7653, 1993). Furthermore, product size analyses revealed that the polymerase catalytic subunit alone excised a few nucleotides from the 3' termini of the primer hybridized to template DNA and that the addition of the BMFR1 polymerase accessory subunit stimulated the nucleotide excision several times. In contrast, the hydrolysis of single-stranded DNA by the BALF5 protein was not affected by the addition of the BMRF1 polymerase accessory subunit at all. These observations suggest that the BMRF1 polymerase accessory subunit forms a complex with the BALF5 polymerase catalytic subunit to stabilize the interaction of the holoenzyme complex with the 3'-OH end of the primer on the template DNA during exonucleolysis. On the other hand, challenger DNA experiments revealed that the BALF5 polymerase catalytic subunit alone stably binds to the primer terminus in a stationary state, whereas the reconstituted polymerase holoenzyme is unstable. The instability of the initiation complex of the EBV DNA polymerase would allow the rapid removal of the EBV DNA polymerase holoenzyme from the lagging strand after it has replicated up to the previous Okazaki fragment. This feature of the EBV DNA polymerase holoenzyme in a stationary state is in marked contrast to the moving holoenzyme complex tightly bound to the primer end during polymerization and exonucleolysis.  相似文献   

2.
A recombinant baculovirus containing the complete sequence for the Epstein-Barr virus (EBV) DNA polymerase catalytic subunit, BALF5 gene product, under the control of the baculovirus polyhedrin promoter was constructed. Insect cells infected with the recombinant virus produced a protein of 110 kDa, recognized by anti-BALF5 protein-specific polyclonal antibody. The expressed EBV DNA polymerase catalytic polypeptide was purified from the cytosolic fraction of the recombinant virus-infected insect cells. The purified protein exhibited both DNA polymerase and 3'-to-5' exonuclease activities, which were neutralized by the anti-BALF5 protein-specific antibody. These results indicate that the 3'-to-5' exonuclease activity associated with the EBV DNA polymerase (T. Tsurumi, Virology 182:376-381, 1991) is an inherent feature of the polymerase catalytic polypeptide. The DNA polymerase and the exonuclease activities of the EBV DNA polymerase catalytic subunit were sensitive to ammonium sulfate in contrast to those of the polymerase complex purified from EBV-producing lymphoblastoid cells, which were stimulated by salt. Furthermore, the template-primer preference for the polymerase catalytic subunit was different from that for the polymerase complex. These observations strongly suggest that the presence of EBV DNA polymerase accessory protein, BMRF1 gene product, does influence the enzymatic properties of EBV DNA polymerase catalytic subunit.  相似文献   

3.
The Epstein-Barr virus (EBV)-encoded replication proteins that account for the basic reactions at the replication fork are thought to be the EBV Pol holoenzyme, consisting of the BALF5 Pol catalytic and the BMRF1 Pol accessory subunits, the putative helicase-primase complex, comprising the BBLF4, BSLF1, and BBLF2/3 proteins, and the BALF2 single-stranded DNA-binding protein. Immunoprecipitation analyses using anti-BSLF1 or anti-BBLF2/3 protein-specific antibody with clarified lysates of B95-8 cells in a viral productive cycle suggested that the EBV Pol holoenzyme physically interacts with the BBLF4-BSLF1-BBLF2/3 complex to form a large complex. Although the complex was stable in 500 mM NaCl and 1% NP-40, the BALF5 protein became dissociated in the presence of 0.1% sodium dodecyl sulfate. Experiments using lysates from insect cells superinfected with combinations of recombinant baculoviruses capable of expressing each of viral replication proteins showed that not the BMRF1 Pol accessory subunit but rather the BALF5 Pol catalytic subunit directly interacts with the BBLF4-BSLF1-BBLF2/3 complex. Furthermore, double infection with pairs of recombinant viruses revealed that each component of the BBLF4-BSLF1-BBLF2/3 complex makes contact with the BALF5 Pol catalytic subunit. The interactions of the EBV DNA polymerase with the EBV putative helicase-primase complex warrant particular attention because they are thought to coordinate leading- and lagging-strand DNA synthesis at the replication fork.  相似文献   

4.
The DNA polymerase processivity factor of the Epstein-Barr virus, BMRF1, associates with the polymerase catalytic subunit, BALF5, to enhance the polymerase processivity and exonuclease activities of the holoenzyme. In this study, the crystal structure of C-terminally truncated BMRF1 (BMRF1-ΔC) was solved in an oligomeric state. The molecular structure of BMRF1-ΔC shares structural similarity with other processivity factors, such as herpes simplex virus UL42, cytomegalovirus UL44, and human proliferating cell nuclear antigen. However, the oligomerization architectures of these proteins range from a monomer to a trimer. PAGE and mutational analyses indicated that BMRF1-ΔC, like UL44, forms a C-shaped head-to-head dimer. DNA binding assays suggested that basic amino acid residues on the concave surface of the C-shaped dimer play an important role in interactions with DNA. The C95E mutant, which disrupts dimer formation, lacked DNA binding activity, indicating that dimer formation is required for DNA binding. These characteristics are similar to those of another dimeric viral processivity factor, UL44. Although the R87E and H141F mutants of BMRF1-ΔC exhibited dramatically reduced polymerase processivity, they were still able to bind DNA and to dimerize. These amino acid residues are located near the dimer interface, suggesting that BMRF1-ΔC associates with the catalytic subunit BALF5 around the dimer interface. Consequently, the monomeric form of BMRF1-ΔC probably binds to BALF5, because the steric consequences would prevent the maintenance of the dimeric form. A distinctive feature of BMRF1-ΔC is that the dimeric and monomeric forms might be utilized for the DNA binding and replication processes, respectively.  相似文献   

5.
6.
7.
Mitochondrial DNA polymerase (pol gamma) is the sole DNA polymerase responsible for replication and repair of animal mitochondrial DNA. Here, we address the molecular mechanism by which the human holoenzyme achieves high processivity in nucleotide polymerization. We have determined the crystal structure of human pol gamma-beta, the accessory subunit that binds with high affinity to the catalytic core, pol gamma-alpha, to stimulate its activity and enhance holoenzyme processivity. We find that human pol gamma-beta shares a high level of structural similarity to class IIa aminoacyl tRNA synthetases, and forms a dimer in the crystal. A human pol gamma/DNA complex model was developed using the structures of the pol gamma-beta dimer and the bacteriophage T7 DNA polymerase ternary complex, which suggests multiple regions of subunit interaction between pol gamma-beta and the human catalytic core that allow it to encircle the newly synthesized double-stranded DNA, and thereby enhance DNA binding affinity and holoenzyme processivity. Biochemical properties of a novel set of human pol gamma-beta mutants are explained by and test the model, and elucidate the role of the accessory subunit as a novel type of processivity factor in stimulating pol gamma activity and in enhancing processivity.  相似文献   

8.
T Tsurumi 《Journal of virology》1993,67(3):1681-1687
A recombinant baculovirus containing the complete sequence for the Epstein-Barr virus (EBV) BMRF1 gene product, the EBV DNA polymerase accessory protein, under the control of the polyhedrin promoter was constructed. Insect cells infected with the recombinant virus produced two phosphoproteins of 52 and 50 kDa and one unphosphorylated protein of 48 kDa, recognized by anti-BMRF1 protein-specific monoclonal antibody. The major protein bands were 50 and 48 kDa. The expressed BMRF1 gene products were purified to near homogeneity from the nuclear extract of the recombinant baculovirus-infected insect cells by double-stranded DNA-cellulose column chromatography followed by heparin-agarose column chromatography. The purified BMRF1 gene products exhibited higher binding affinity for double-stranded DNA than for single-stranded DNA without ATP hydrolysis. The protein-DNA interaction did not necessarily require a primer terminus. The present system will open the way for the biochemical characterization of the EBV DNA polymerase accessory protein.  相似文献   

9.
We have reconstituted the holoenzyme of the human mitochondrial DNA polymerase from cloned and overexpressed catalytic and accessory subunits. We have examined the polymerization activity of the catalytic subunit alone and of the holoenzyme to establish the function of the accessory subunit in this two subunit enzyme. The accessory subunit associates with the catalytic subunit with a dissociation constant of 35 +/- 16 nM as measured by the concentration dependence of its effect in stimulating maximal DNA binding and polymerization. At saturating concentrations, the accessory subunit contributes to every kinetic parameter examined to facilitate tighter binding of DNA and nucleotide and faster replication. The accessory protein makes the DNA binding 3.5-fold tighter (K(d) of 9.9 +/- 2.1 nM compared to 39 +/- 10 nM for the catalytic subunit alone) without significantly affecting the DNA dissociation rate (0.02 +/- 0.001 compared to 0.03 +/- 0.001 s(-)(1)). The ground-state nucleotide binding is improved from 4.7 +/- 2.0 to 0.78 +/- 0.065 microM, and the maximum DNA polymerization rate is increased from 8.7 +/- 1.1 to 45 +/- 1 s(-)(1) by the addition of the accessory protein. This leads to an increase in processivity from an estimated 290 +/- 46 to 2250 +/- 162. Although the accessory protein has been described as a "processivity factor" because of its effect on the ratio of rate constants defining processivity, this terminology falls short of adequately describing the profound effects of the small subunit on nucleotide-binding and incorporation catalyzed by the large subunit. By using the complete holoenzyme, we can now proceed with a comprehensive analysis of the structural and mechanistic determinants of enzyme specificity that govern toxicity of nucleoside analogues used in the treatment of viral infections such as AIDS.  相似文献   

10.
The Epstein-Barr virus (EBV) BMRF1 protein is a DNA polymerase processivity factor. We have deleted the BMRF1 open reading frame from the EBV genome and assessed the DeltaBMRF1 EBV phenotype. DeltaBMRF1 viruses were replication deficient, but the wild-type phenotype could be restored by BMRF1 trans-complementation. The replication-deficient phenotype included impaired lytic DNA replication and late protein expression. DeltaBMRF1 and wild-type viruses were undistinguishable in terms of their ability to transform primary B cells. Our results provide genetic evidence that BMRF1 is essential for lytic replication of the EBV genome.  相似文献   

11.
Epstein-Barr virus (EBV) productive DNA replication occurs at discrete sites, called replication compartments, in nuclei. In this study we performed comprehensive analyses of the architecture of the replication compartments. The BZLF1 oriLyt binding proteins showed a fine, diffuse pattern of distribution throughout the nuclei at immediate-early stages of induction and then became associated with the replicating EBV genome in the replication compartments during lytic infection. The BMRF1 polymerase (Pol) processivity factor showed a homogenous, not dot-like, distribution in the replication compartments, which completely coincided with the newly synthesized viral DNA. Inhibition of viral DNA replication with phosphonoacetic acid, a viral DNA Pol inhibitor, eliminated the DNA-bound form of the BMRF1 protein, although the protein was sufficiently expressed in the cells. These observations together with the findings that almost all abundantly expressed BMRF1 proteins existed in the DNA-bound form suggest that the BMRF1 proteins not only act at viral replication forks as Pol processive factors but also widely distribute on newly replicated EBV genomic DNA. In contrast, the BALF5 Pol catalytic protein, the BALF2 single-stranded-DNA binding protein, and the BBLF2/3 protein, a component of the helicase-primase complex, were colocalized as distinct dots distributed within replication compartments, representing viral replication factories. Whereas cellular replication factories are constructed based on nonchromatin nuclear structures and nuclear matrix, viral replication factories were easily solubilized by DNase I treatment. Thus, compared with cellular DNA replication, EBV lytic DNA replication factories would be simpler so that construction of the replication domain would be more relaxed.  相似文献   

12.
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein is known as a regulator which recognizes phosphorylated Ser/Thr-Pro motifs and increases the rate of cis and trans amide isomer interconversion, thereby altering the conformation of its substrates. We found that Pin1 knockdown using short hairpin RNA (shRNA) technology resulted in strong suppression of productive Epstein-Barr virus (EBV) DNA replication. We further identified the EBV DNA polymerase catalytic subunit, BALF5, as a Pin1 substrate in glutathione S-transferase (GST) pulldown and immunoprecipitation assays. Lambda protein phosphatase treatment abolished the binding of BALF5 to Pin1, and mutation analysis of BALF5 revealed that replacement of the Thr178 residue by Ala (BALF5 T178A) disrupted the interaction with Pin1. To further test the effects of Pin1 in the context of virus infection, we constructed a BALF5-deficient recombinant virus. Exogenous supply of wild-type BALF5 in HEK293 cells with knockout recombinant EBV allowed efficient synthesis of viral genome DNA, but BALF5 T178A could not provide support as efficiently as wild-type BALF5. In conclusion, we found that EBV DNA polymerase BALF5 subunit interacts with Pin1 through BALF5 Thr178 in a phosphorylation-dependent manner. Pin1 might modulate EBV DNA polymerase conformation for efficient, productive viral DNA replication.  相似文献   

13.
Polymerase γ is solely responsible for fast and faithful replication of the mitochondrial genome. High processivity of the polymerase γ is often achieved by association of the catalytic subunit with accessory factors that enhance its catalytic activity and/or DNA binding. Here we characterize the intrinsic catalytic activity and processivity of the recombinant catalytic subunit of yeast polymerase γ, the Mip1 protein. We demonstrate that Mip1 can efficiently synthesize DNA stretches of up to several thousand nucleotides without dissociation from the template. Furthermore, we show that Mip1 can perform DNA synthesis on double-stranded templates utilizing a strand displacement mechanism. Our observations confirm that in contrast to its homologues in other organisms, Mip1 can function as a single-subunit replicative polymerase.  相似文献   

14.
The yeast Saccharomyces cerevisiae catalytic DNA polymerase I 180-kDa subunit and the tightly associated 86-kDa polypeptide have been purified using immunoaffinity chromatography, permitting further characterization of the DNA polymerase activity of the DNA primase-DNA polymerase protein complex. The subunits were purified to apparent homogeneity from separate overproducing yeast strains using monoclonal antibodies specifically recognizing each subunit. When the individual subunits were recombined in vitro a p86p180 physical complex formed spontaneously, as judged by immunoprecipitation of 180-kDa polypeptide and DNA polymerase activity with the anti-86-kDa monoclonal antibody. The 86-kDa subunit stabilized the DNA polymerase activity of the 180-kDa catalytic subunit at 30 degrees C, the physiological temperature. The apparent DNA polymerase processivity of 50-60 nucleotides on poly(dA).oligo(dT)12 or poly(dT).oligo(A)8-12 template-primer was not affected by the presence of the 86-kDa subunit but was reduced by increased Mg2+ concentration. The Km of the catalytic 180-kDa subunit for dATP or DNA primer terminus was unaffected by the presence of the 86-kDa subunit. The isolated 180-kDa polypeptide was sufficient to catalyze all the DNA synthesis that had been observed previously in the DNA primase-DNA polymerase protein complex. The 180-kDa subunit possessed a 3'----5'-exonuclease activity that catalyzed degradation of polynucleotides, but degradation of oligonucleotide substrates of chain lengths up to 50 was not detected. This exonuclease activity was unaffected by the presence of the 86-kDa subunit. Despite the striking physical similarity of the DNA primase-DNA polymerase protein complex in all eukaryotes examined, the data presented here indicate differences in the enzymatic properties detected in preparations of the DNA polymerase subunits isolated from S. cerevisiae as compared with the properties of preparations from Drosophila cells. In particular, the 3'----5'-exonuclease activity associated with the yeast catalytic DNA polymerase subunit was not masked by the 86-kDa subunit.  相似文献   

15.
Genetic and biochemical studies have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication. A number of studies have previously suggested that these two proteins specifically interact, and more recent studies have confirmed that the viral DNA polymerase from HSV-1-infected cells consists of a heterodimer of the UL30 (Pol; the catalytic subunit) and UL42 polypeptides. A comparison of the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells indicated that the Pol-UL42 complex is more highly processive than Pol alone on singly primed M13 single-stranded substrates. The results of these studies are consistent with the idea that the UL42 polypeptide is an accessory subunit of the HSV-1 DNA polymerase that acts to increase the processivity of polymerization. Preliminary experiments suggested that the increase in processivity was accompanied by an increase in the affinity of the polymerase for the ends of linear duplex DNA. We have further characterized the effect of the UL42 polypeptide on a defined hairpin primer template substrate. Gel shift and filter binding studies show that the affinity of the Pol catalytic subunit for the 3' terminus of the primer template increases 10-fold in the presence of UL42. DNase I footprinting experiments indicate that the Pol catalytic subunit binds to the primer template at a position that protects 14 bp of the 3' duplex region and an adjacent 18 bases of the single-stranded template. The presence of the UL42 polypeptide results in the additional protection of a contiguous 5 to 14 bp in the duplex region but does not affect the 5' position of the Pol subunit. Free UL42 protects the entire duplex region of the substrate but does not bind to the single-stranded region. Taken together, these results suggest that the increase in processivity in the presence of UL42 is related to the double-stranded DNA-binding activity of free UL42 and that the role of UL42 in the DNA polymerase complex is to act as a clamp, decreasing the probability that the polymerase will dissociate from the template after each cycle of catalysis.  相似文献   

16.
Human DNA polymerase gamma is composed of a 140-kDa catalytic subunit and a smaller accessory protein variously reported to be 43-54 kDa. Immunoblot analysis of the purified, heterodimeric native human polymerase gamma complex identified the accessory subunit as 55 kDa. We isolated the full-length cDNA encoding a 55-kDa polypeptide, expressed the cDNA in Escherichia coli and purified the 55-kDa protein to homogeneity. Recombinant Hp55 forms a high affinity, salt-stable complex with Hp140 during protein affinity chromatography. Immunoprecipitation, gel filtration, and sedimentation analyses revealed a 190-kDa complex indicative of a native heterodimer. Reconstitution of Hp140.Hp55 raises the salt optimum of Hp140, stimulates the polymerase and exonuclease activities, and increases the processivity of the enzyme by several 100-fold. Similar to Hp140, isolated Hp55 binds DNA with moderate strength and was a specificity for double-stranded primer-template DNA. However, Hp140.Hp55 has a surprisingly high affinity for DNA, and kinetic analyses indicate Hp55 enhances the affinity of Hp140 for primer termini by 2 orders of magnitude. Thus the enhanced DNA binding caused by Hp55 is the basis for the salt tolerance and high processivity characteristic of DNA polymerase gamma. Observation of native DNA polymerase gamma both as an Hp140 monomer and as a heterodimer with Hp55 supports the notion that the two forms act in mitochondrial DNA repair and replication. Additionally, association of Hp55 with Hp140 protects the polymerase from inhibition by N-ethylmaleimide.  相似文献   

17.
Epstein-Barr virus (EBV) utilizes a completely different mode of DNA replication during the lytic cycle than that employed during latency. The latency origin of replication, ori-P, which functions in the replication of the latent episomal form of the EBV genome, requires only a single virally encoded protein, EBNA-1, for its activity. During the lytic cycle, a separate origin, ori-Lyt, is utilized. Relatively little is known about the trans-acting proteins involved in ori-Lyt replication. We established a cotransfection-replication assay to identify EBV genes whose products are required for replication of ori-Lyt. In this assay, a BamHI-H plasmid containing ori-Lyt was replicated in Vero cells cotransfected with the BamHI-H target, the three EBV lytic-cycle transactivators Zta, Rta, and Mta, and the EBV genome provided in the form of a set of six overlapping cosmid clones. By removing individual cosmids from the cotransfection mixture, we found that only three of the six cosmids were necessary for ori-Lyt replication. Subcloning of the essential cosmids led to the identification of six EBV genes that encode replication proteins. These genes and their functions (either known or predicted on the basis of sequence comparison with herpes simplex virus) are BALF5, the DNA polymerase; BALF2, the single-stranded DNA-binding protein homolog; BMRF1, the DNA polymerase processivity factor; BSLF1 and BBLF4, the primase and helicase homologs; and BBLF2/3, a potential homolog of the third component of the helicase-primase complex. In addition, ori-Lyt replication in this cotransfection assay was also dependent on one or more genes provided by the EBV SalI-F fragment and on the three lytic-cycle transactivators Zta, Rta, and Mta.  相似文献   

18.
J Q Zhou  H He  C K Tan  K M Downey    A G So 《Nucleic acids research》1997,25(6):1094-1099
DNA polymerase delta is usually isolated as a heterodimer composed of a 125 kDa catalytic subunit and a 50 kDa small subunit of unknown function. The enzyme is distributive by itself and requires an accessory protein, the proliferating cell nuclear antigen (PCNA), for highly processive DNA synthesis. We have recently demonstrated that the catalytic subunit of human DNA polymerase delta (p125) expressed in baculovirus-infected insect cells, in contrast to the native heterodimeric calf thymus DNA polymerase delta, is not responsive to stimulation by PCNA. To determine whether the lack of response to PCNA of the recombinant catalytic subunit is due to the absence of the small subunit or to differences in post-translational modification in insect cells versus mammalian cells, we have co-expressed the two subunits of human DNA polymerase delta in insect cells. We have demonstrated that co-expression of the catalytic and small subunits of human DNA polymerase delta results in formation of a stable, fully functional heterodimer, that the recombinant heterodimer, similar to native heterodimer, is markedly stimulated (40- to 50-fold) by PCNA and that the increase in activity seen in the presence of PCNA is the result of an increase in processivity. These data establish that the 50 kDa subunit is essential for functional interaction of DNA polymerase delta with PCNA and for highly processive DNA synthesis.  相似文献   

19.
Genetic experiments have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication, and a number of studies have suggested that these two proteins specifically interact. We have confirmed and extended these findings. The viral DNA polymerase from HSV-1-infected cells has been purified as a complex containing equimolar quantities of the UL30 (Pol, the catalytic subunit) and UL42 polypeptides. Sedimentation and gel filtration analyses of this complex are consistent with the idea that the complex consists of a heterodimer of Pol and UL42. A complex with identical physical and functional properties was also purified from insect cells coinfected with recombinant baculoviruses expressing the two polypeptides. Therefore, the formation of the Pol-UL42 complex does not require the participation of any other HSV-encoded protein. We have compared the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells. The specific activity of the catalytic subunit alone was nearly identical to that of the complex when assayed on activated DNA. When assayed on a defined template such as singly primed M13 DNA, however, the combination of Pol and UL42 utilized fewer primers and formed larger products than Pol alone. Template challenge experiments demonstrated that the Pol-UL42 complex was more highly processive than Pol alone. Our data are consistent with the idea that the UL42 polypeptide is an accessory subunit of the DNA polymerase that acts to increase the processivity of polymerization.  相似文献   

20.
C S Chow  D M Coen 《Journal of virology》1995,69(11):6965-6971
The herpes simplex virus DNA polymerase is a heterodimer consisting of a catalytic subunit and the protein UL42, which functions as a processivity factor. It has been hypothesized that UL42 tethers the catalytic subunit to the DNA template by virtue of DNA binding activity (J. Gottlieb, A. I. Marcy, D. M. Coen, and M. D. Challberg, J. Virol. 64:5976-5987, 1990). Relevant to this hypothesis, we identified two linker insertion mutants of UL42 that were unable to bind to a double-stranded-DNA-cellulose column but retained their ability to bind the catalytic subunit. These mutants were severely impaired in the stimulation of long-chain-DNA synthesis by the catalytic subunit in vitro. In transfected cells, the expressed mutant proteins localized to the nucleus but were nonetheless deficient in complementing the growth of a UL42 null virus. Thus, unlike many other processivity factors, UL42 appears to require an intrinsic DNA binding activity for its function both in vitro and in infected cells. Possible mechanisms for the activity of UL42 and its potential as a drug target are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号