首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3–1.7 and 4.0–5.4 μm, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity.  相似文献   

2.
Poly(X-Gly-Gly), simple structural models for the hydrophobic, proline-devoid, regions of elastin, have been synthesized and studied by circular dichroism and NMR spectroscopies. The results gave evidence of type II beta-turns as the only ordered structure present in the polymers. The stability of the turns has been shown to decrease on hydration and to increase in the series Leu less than Ala less than Val less than Ile.  相似文献   

3.
Conformations of two pairs of dehydropeptides with the opposite configuration of the ΔPhe residue, Boc‐Gly‐ΔZPhe‐Gly‐Phe‐OMe ( Z‐ OMe ), Boc‐Gly‐ΔEPhe‐Gly‐Phe‐OMe ( E‐ OMe ), Boc‐Gly‐ΔZPhe‐Gly‐Phe‐p‐NA ( Z‐p‐ NA ), and Boc‐Gly‐ΔEPhe‐Gly‐Phe‐p‐NA ( E‐p‐ NA ) were compared on the basis of CD and NMR studies in MeOH, trifluoroethanol (TFE), MeCN, chloroform, and dimethylsulfoxide (DMSO). The CD results were used as the additional input data for the NMR‐based determination of the detailed solution conformations of the peptides. It was found that E‐ OMe is unordered and Z‐ OMe , Z‐p‐ NA , and E‐p‐ NA adopt the β‐turn conformation. There are two overlapping β‐turns in each of those peptides: type II and type III′ in Z‐ OMe and Z‐p‐ NA , and two type III in E‐p‐ NA . The ordered structure‐inducing properties of ΔZPhe and ΔEPhe in the peptides studied depend on the C‐terminal blocking group. In methyl esters, the ΔZPhe residue is a strong inducer of ordered conformations whereas the ΔEPhe one has no such properties. In p‐nitroanilides, both isomers of ΔPhe cause the peptides to adopt ordered structures to a similar extent. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1055–1064, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
The development of NMR is described to illustrate the importance of new methodologies to solve biological problems.  相似文献   

5.
Two series of dehydropeptides of the general formulae Boc-Gly-X-Phe-p-NA, Boc-Gly-Gly-X-Phe-p-NA, Gly-X-Gly-Phe-p-NA.TFA, and Boc-Gly-X-Gly-Phe-p-NA, with X = Delta(Z)Phe and DeltaAla, were studied with NMR in DMSO and CDCl(3)-DMSO, and with CD in MeOH, MeCN, and TFE. The NMR spectra measured in DMSO suggest that peptides with the DeltaPhe residue next to Phe are folded whereas peptides with Gly between DeltaPhe and Phe are less ordered. NMR spectra of DeltaAla-containing peptides indicate that these peptides are flexible and their conformational equilibria are populated by many different conformations. The CD spectra show that conformational properties of the peptides studied are distinctly influenced by a mutual position of the dehydroamino acid residue and the p-NA group. They indicate that all dehydropeptides with the DeltaPhe residue, Boc-Gly-DeltaAla-Phe-p-NA, and Boc-Gly-Gly-DeltaAla-Phe-p-NA adopt ordered conformations in all solvents studied, presumably of the beta-turn type. The last two peptides exhibit surprising chiroptical properties. Their spectra show exciton coupling-like couplets in the region of the p-NA group absorption. This shape of CD spectra suggests a rigid, chiral conformation with a fixed disposition of the p-NA group. The CD spectra indicate that Boc-Gly-DeltaAla-Gly-Phe-p-NA and Gly-DeltaAla-Gly-Phe-p-NA.TFA are unordered, independently of the solvent.  相似文献   

6.
Broadly neutralizing anti-hepatitis B virus (HBV) antibody HzKR127 undergoes a fairly large conformational change of CDR H3 loop upon binding to HBV preS1 epitope peptide. In this study, we identified low-affinity antibody-binding sites in the largely unstructured preS1 region by nuclear magnetic resonance and biochemical studies, indicating that the antibody binds to the preS1 region outside the major immune epitope with low affinity. Surface plasma resonance experiments showed that the full-length preS1 has approximately three fold higher affinity for HzKR127 Fab than the preS1 epitope peptide, suggesting that the presence of low-affinity sites in the preS1 region increases the antibody-binding affinity. Therefore, the low-affinity binding of the antibody to non-epitope regions of preS1 may contribute to effective neutralization.  相似文献   

7.
Klewpatinond M  Viles JH 《FEBS letters》2007,581(7):1430-1434
A natively unfolded region of the prion protein, PrP(90-126) binds Cu(2+) ions and is vital for prion propagation. Pentapeptides, acyl-GGGTH(92-96) and acyl-TNMKH(107-111), represent the minimum motif for this Cu(2+) binding region. EPR and (1)H NMR suggests that the coordination geometry for the two binding sites is very similar. However, the visible CD spectra of the two sites are very different, producing almost mirror image spectra. We have used a series of analogues of the pentapeptides containing His(96) and His(111) to rationalise these differences in the visible CD spectra. Using simple histidine-containing tri-peptides we have formulated a set of empirical rules that can predict the appearance of Cu(2+) visible CD spectra involving histidine and amide main-chain coordination.  相似文献   

8.
Spectroscopic studies on synthetic polypeptides containing the unit X-G-G (X = V or L) are reported. The sequences, constituting either fragments or model of elastin, were shown to adopt type II β-turns together with an ensemble of unordered conformations. Furthermore, it was found that the stability of the β-turns was depending on the nature of the X residue, on the hydration of the chain and, in the case of the sequence G-V-G-G-L, was decreasing by increasing the length of the chain.  相似文献   

9.
10.
Late embryogenesis abundant (LEA) proteins are produced during seed embryogenesis and in vegetative tissue in response to various abiotic stressors. A correlation has been established between LEA expression and stress tolerance, yet their precise biochemical mechanism remains elusive. LEA proteins are very rich in hydrophilic amino acids, and they have been found to be intrinsically disordered proteins (IDPs) in vitro. Here, we perform biochemical and structural analyses of the four LEA3 proteins from Arabidopsis thaliana (AtLEA3). We show that the LEA3 proteins are disordered in solution but have regions with propensity for order. All LEA3 proteins were effective cryoprotectants of LDH in the freeze/thaw assays, while only one member, AtLEA3‐4, was shown to bind Cu2+ and Fe3+ ions with micromolar affinity. As well, only AtLEA3‐4 showed binding and a gain in α‐helicity in the presence of the membrane mimic dodecylphosphocholine (DPC). We explored this interaction in greater detail using 15N‐heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance, and demonstrate that two sets of conserved motifs present in AtLEA3‐4 are involved in the interaction with the DPC micelles, which themselves gain α‐helical structure.  相似文献   

11.
The controlled action of trypsin on porcine pancreatic procarboxypeptidase A releases a large activation peptide which contains the activation segment of the proenzyme. Circular dichroism studies indicate that the isolated activation peptide contains a high percentage of residues in ordered secondary structures (mainly α-helix). This result agrees with predictions of secondary structure carried out on the published amino acid sequence of the homologous rat proenzyme. Moreover, proton magnetic resonance spectroscopy shows that the peptide adopts a thermostable tertiary structure with characteristics typical of globular proteins. The results as a whole indicate that the activation segment of porcine pancreatic procarboxypeptidase A constitutes a folded structural domain.  相似文献   

12.
Zheng H  Zhao J  Sheng W  Xie XQ 《Biopolymers》2006,83(1):46-61
The cannabinoid receptor subtype 2 (CB2) is a member of the G-protein coupled receptor (GPCR) superfamily. As the relationship between structure and function for this receptor remains poorly understood, the present study was undertaken to characterize the structure of a segment including the first and second transmembrane helix (TM1 and TM2) domains of CB2. To accomplish this, a transmembrane double-helix bundle from this region was expressed, purified, and characterized by NMR. Milligrams of this hydrophobic fragment of the receptor were biosynthesized using a fusion protein overexpression strategy and purified by affinity chromatography combined with reverse phase HPLC. Chemical and enzymatic cleavage methods were implemented to remove the fusion tag. The resultant recombinant protein samples were analyzed and confirmed by HPLC, mass spectrometry, and circular dichroism (CD). The CD analyses of HPLC-purified protein in solution and in DPC micelle preparations suggested predominant alpha-helical structures under both conditions. The 13C/15N double-labeled protein CB2(27-101) was further verified and analyzed by NMR spectroscopy. Sequential assignment was accomplished for more than 80% of residues. The 15N HSQC NMR results show a clear chemical shift dispersion of the amide nitrogen-proton correlation indicative of a pure double-labeled polypeptide molecule. The results suggest that this method is capable of generating transmembrane helical bundles from GPCRs in quantity and purity sufficient for NMR and other biophysical studies. Therefore, the biosynthesis of GPCR transmembrane helix bundles represents a satisfactory alternative strategy to obtain and assemble NMR structures from recombinant "building blocks."  相似文献   

13.
Stepwise solution syntheses are described of the homo-oligomers Z-(Thr)n-NHCH3 (n=1–4, I 1–4), Z-{[Gal(Ac)4β]Thr}n-NHCH3(n=1–5, II 1–5) and Z-[(Galβ)Thr]n-NHCH3 (n=1−5, III 1–5). Members of the III 1–5 series were obtained by de-acetylation of the corresponding oligomers of the II 1–5 series. The conformational preferences of the terminally protected homo-peptides of the three series were investigated by FT-IR absorption spectroscopy both in the solid state and in CDCl3 solution, at various concentrations. Proton NMR measurements in CDCl3 and in DMSO-d6 were also carried out and the effect of temperature variation on the chemical shifts of amide protons was determined in DMSO-d6 (range 298–335 K) and in CDCl3 (range 298–320 K). CD spectra were recorded in water and in TFE. Solubility problems prevented measurements in CDCl3 solution for Z-(Thr)4-NHCH3 and for the entire III 1–5 series. The existence of unordered structures in the carbohydrate-free oligomers and of more or less extended, organized structures in the glycosylated derivatives is indicated by the NMR and IR measurements. The sugar moieties apparently show a structure-inducing effect on the peptide chain. ©1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Streptomyces subtilisin inhibitor (SSI) is known to exist in at least two distinct denatured states, cold-denatured (D') and heat-denatured (D) under acidic conditions. In the present work, we investigated the manner how increasing urea concentration from 0 to 8 M changes the polypeptide chain conformation of SSI that exists initially in the D' and D states as well as in the native state (N), in terms of the secondary structure, the tertiary structure, and the chain form, based on the results of the experiments using circular dichroism (CD), small-angle X-ray scattering (SAXS) and 1H-NMR spectroscopy. Our results indicate that the urea-induced conformational transitions of SSI under typical conditions of D' (pH 1.8, 3 degrees C) occur at least in two steps. In the urea concentration range of 0-2 M (step 1), a cooperative destruction of the tertiary structure occurs, resulting in a mildly denatured state (DU), which may still contain a little amount of secondary structures. In the concentration range of 2-4 M urea (step 2), the DU state gradually loses its residual secondary structure, and increases the radius of gyration nearly to a maximum value. At 4 M urea, the polypeptide chain is highly disordered with highly mobile side chains. Increasing the urea concentration up to 8 M probably results in the more highly denatured or alternatively the stiffer chain conformations. The conformational transition starting from the N state proceeds essentially the same way as in the above scheme in which D' is replaced with N. The conformational transition starting from the D state lacks step 1 because the D state contains no tertiary structures and is similar to the DU state. The fact that similar conformations are reached at urea concentrations above 2 M from different conformations of D', D, and N indicates that the effect of urea dominates in determining the polypeptide conformation of SSI in the denatured states rather than the pH and temperature.  相似文献   

15.
In this paper we investigate the effect of main chain isosteric replacement of specific amino acid residues by α-hydroxy acids. As part of a long term program specifically protected heptaglutamates were prepared and their circular dichroism and nuclear magnetic resonance spectra in various solvents were examined. From these experiments conformational preferences were deduced. We have also prepared oligo-(γ-methyl-glutamates) replacing the amino acids at specific positions along the chain with S-lactic acid and have elucidated the effect of these main chain isosteric replacements on oligopeptide structure. Analogues of collagen also have been prepared with glycolic acid replacing specific glycine residues. We synthesized the model hexamers Ac-Ala-Gly-Pro-Ala-Gly-Pro-NHMe, Ac-Ala-Glc-Pro-Ala-Gly-Pro-NHMe, and Ac-Ala-Gly-Pro-Ala-Glc-Pro-NHMe in order to study their structural characteristics under various conditions. Preliminary nuclear magnetic resonance and circular dichroism results are presented.  相似文献   

16.
17.
A joint application of experimental and computational approaches has revealed the exceptionally high attitude of crabrolin, a 13‐residue peptide with sequence FLPLILRKIVTAL‐NH2, to adopt alpha‐helix conformation not only in membrane‐mimicking solvents but also in the presence of a not negligible amount of water. Our study shows that this propensity essentially resides in the intrinsic thermodynamic stability of alpha‐helix conformation whose kinetic stability is drastically reduced in water solvent. Our analysis suggests that this is due to two effects enhanced by water: a more local effect consisting of the demolition of intra‐peptide H‐bonds, essential for the alpha‐helix formation, and a bulk – electrostatic – effect favoring conformational states more polar than alpha‐helix. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Modification of DNA by the carcinogen N-acetoxy-N-2-acetylaminofluorene gives two adducts, a major one at the C-8 position of guanine and a minor one at the N-2 position with differing conformations. Binding at the C-8 position results in a large distortion of the DNA helix referred to as the “base displacement model” with the carcinogen inserted into the DNA helix and the guanosine displaced to the outside. The result is increased susceptibility to nuclease S, digestion due to the presence of large, single-stranded regions in the modified DNA. In contrast, the N-2 adduct results in much less distortion of the helix and is less susceptible to nuclease S1 digestion. A third and predominant adduct is formed in vivo, the deacetylated C-8 guanine adduct. The conformation of this adduct has been investigated using the dimer dApdG as a model for DNA. The attachment of aminofluorene (AF) residues introduced smaller changes in the circular dichroism (CD) spectra of dApdG than binding of acetylaminofluorene (AAF) residues. Similarly, binding of AF residues caused lower upfield shifts for the H-2 and H-8 protons of adenine than the AAF residues. These results suggest that AF residues are less stacked with neighboring bases than AAF and induce less distortion in conformation of the modified regions than AAF. An alternative conformation of AAF-modified deoxyguanosine has been suggested based on studies of poly(dG-dC)·poly(dG-dC). Modification of this copolymer with AAF to an extent of 28% showed a CD spectrum that had the characteristics of the left-handed Z conformation seen in unmodified poly-(dG-dC)·poly(dG-dC) at high ethanol or salt concentrations. Poly(dG)·poly(dC), which docs not undergo the B to Z transition at high ethanol concentrations, did not show this type of conformational change with high AAF modification. Differences in conformation were suggested by single-strand specific nuclease S1 digestion and reactivity with anticytidine antibodies. Highly modified poly(dG-dC)·poly(dG-dC) was almost completely resistant to nuclease S1 hydrolysis, while, modified DNA and poly(dG)·poly(dC) are highly susceptible to digestion. Two possible conformations for deoxyguanosine modified at the C-8 position by AAF are compared depending on whether its position is in alternating purine-pyrimidine sequences or random sequence DNA.  相似文献   

19.
Protein aggregation is a process in which proteins self-associate into imperfectly ordered macroscopic entities. Such aggregates are generally classified as either amorphous or highly ordered, the most common form of the latter being amyloid fibrils. Amyloid fibrils composed of cross-β-sheet structure are the pathological hallmarks of several diseases including Alzheimer’s disease, but are also associated with functional states such as the fungal HET-s prion. This review aims to summarize the recent high-resolution structural studies of amyloid fibrils in light of their (potential) activities. We propose that the repetitive nature of the cross-β-sheet structure of amyloids is key for their multiple properties: the repeating motifs can translate a rather non-specific interaction into a specific one through cooperativity.  相似文献   

20.
Stepwise solution syntheses of the homo-oligomers Boc-(Asn)n-NHCH3 (n = 1-5; I1-5), Boc-[[GlcNAc(Ac)3beta]Asn]n-NHCH3 (n = 1-8; II1-8), and Boc-[(GlcNAcbeta)Asn]n-NHCH3 (n = 1-8; III1-8) are described. Members of the series III were obtained by deacetylation of the corresponding members of the series II. The conformational preferences of the N-protected homo-peptides of the three series were investigated by spectroscopic techniques. 1H-NMR measurements were carried out in various solvents; the CD spectra were recorded in water, aqueous SDS and TFE. The poor solubility of the oligomers of the three series prevented FT-IR measurements in solution. NMR and IR measurements indicate the existence of unordered structures containing some gamma-turns in the carbohydrate-free oligomers and the presence of beta-turns in the glycosylated oligopeptides, whether acetylated or not. The CD spectra do not indicate the presence of organized structures. The sugar moieties apparently do not have a structure-inducing effect on the asparagine homo-oligomer main chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号