首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Abstract N 1-Acetylnorspermidine [CH3CONH(CH2)3NH(CH2)3NH3] was identified in Vibrio parahaemolyticus , which contains norspermidine as a major polyamine. This is the first example for the natural occurence of monoacetylated unusual polyamine. The N 1-acetylnorspermidine content was the highest 4 h after inoculation. Incubation of norspermidine and acetyl CoA with a cell extract from V. parahaemolyticus produced N 1-acetylnorspermidine. A remarkable increase in specific activity of the acetyltransferase was observed at the exponential phase of growth. Spermidine also served as a substrate for the enzyme, with the formation of two isomers of the acetylspermidines ( N 1-acetylspermidine was predominant), but the reaction rate was less than 50% of that with norspermidine. These results suggest that norspermidine in V. parahaemolyticus may be associated with the cell growth and its role may be controlled through acetylation, as reported for spermidine in Escherichia coli .  相似文献   

2.
A low-cost medium, MGRS, has been developed for growth and lipase production from Bacillus THL027 at 65 degrees C and pH 7.0. MGRS was composed of 2% (v/v) buffer solution (7.3% (w/v) Na(2)HPO(4), 3.2% (w/v) KH(2)PO(4), pH 7.2), 40 microg ml(-1) FeSO(4) and 40 microg ml(-1) MgSO(4), 0.1% (w/v) (NH(4))(2)SO(4) supplemented with 3% NaCl, 0.1% glucose, 1.0% rice bran oil and 0.5% (w/v) rice bran. The lipase was purified 2.6-fold to apparent homogeneity by ultrafiltration and gel filtration chromatography. Its molecular mass was 69 kDa. The purified enzyme was characterized for its general physical properties.  相似文献   

3.
4.
Reaction centers were purified from the thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. The reaction center consists of four polypeptides L, M, H and C, whose apparent molecular masses were determined to be 25, 30, 34 and 44 kDa, respectively, by polyacrylamide gel electrophoresis. The heaviest peptide corresponds to tightly bound cytochrome. The tightly bound cytochrome c contains two types of heme, high-potential c-556 and low-potential c-553. The low-potential heme is able to be photooxidized at 77 K. The reaction center exhibits laser-flash-induced absorption changes and circular dichroism spectra similar to those observed in other purple photosynthetic bacteria. Whole cells contain both ubiquinone and menaquinone. Reaction centers contain only a single active quinone; chemical analysis showed this to be menaquinone. Reaction center complexes without the tightly bound cytochrome were also prepared. The near-infrared pigment absorption bands are red-shifted in reaction centers with cytochrome compared to those without cytochrome.  相似文献   

5.
Abstract Antibodies against the purified octameric l -leucine dehydrogenase (LeuDH) from the mesophilic Bacillus cereus have been used to screen 16 thermophilic Bacillus strains for LeuDH. 4 of these strains, Bacillus sphaericus 461 and Bacillus sp. 405, 406, and 411, showed a particularly strong cross reaction of the partial identity type when examined by Ouchterlony double diffusion assay, thus indicating that they were immunologically related to the B. cereus enzyme. The LeuDH from the thermophilic strains were very stable and highly active at elevated temperatures, and gave a downward bend at about 55°C in the Arrhenius plot. The pH optimum for l -leucine deamination was around pH 11 for all strains examined.  相似文献   

6.
Synthesis of enzyme-bound ATP was demonstrated with purified TF1 (F1-ATPase from thermophilic bacterium PS3) from medium inorganic phosphate (Pi) and enzyme-bound ADP in the presence of organic solvents such as dioxane, ethanol, dimethylformamide, methanol, acetone, acetonitrile or ethyleneglycol. The optimal concentrations of dimethylformamide, ethanol or methanol were 50%, 30% and 40% and the half-maximal concentrations of Pi were 13 mM, 20 mM and 18 mM, respectively. Thus it is evident that the effect of dimethylsulfoxide on TF1 to form enzyme-bound ATP [8] is not due to a specific interaction between dimethylsulfoxide and the enzyme, but to a decrease in polarity of the medium. In the presence of methanol, the dependence of ATP synthesis on various divalent metal ions was compared to that for the ATP-hydrolyzing activity and the ATP-driven proton-translocating activity of TF1. While Mn2+, Co2+, Zn2+ and Cd2+ are as effective as Mg2+ for the ATP-hydrolyzing activity of TF1, Zn2+ and Cd2+ are either less or not effective for proton translocation and for ATP synthesis. This result appears to be consistent with the idea that the TF1-ATP complex formed in organic solvents represents one of the intermediates in the reaction sequences of ATP synthesis by H+-ATPase using the proton gradient.  相似文献   

7.
The biosynthesis and accumulation of cyanophycin in the thermophilic cyanobacterium Synechococcus sp. MA19 were studied. By growing the cells in a 80-l closed tubular photobioreactor under controlled conditions, the cells accumulated cyanophycin amounting up to 3.5% of the dry cell matter. The cyanophycin was purified and chemical analysis showed that it was composed of arginine and aspartic acid occurring at a molar ratio of 1:0.9. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a broad distribution of the apparent molecular masses ranging from 20 to 130 kDa with a maximum at 50 kDa. During a three-step purification procedure involving ion exchange chromatography and gel filtration, the cyanophycin synthetase from strain MA19 was purified 144-fold to electrophoretic homogeneity. It consisted of only one single type of subunit exhibiting an apparent molecular mass of 130 kDa. The enzyme catalyzed the polymerization of arginine and aspartate at elevated temperatures and was even active at 80 degrees C.  相似文献   

8.
Abstract NADP+-dependent glutamate dehydrogenase (GDH; EC 1.4.1.4) was purified using acetone precipitation, heat, DEAE-cellulose and dye-ligand Ramazol Red column chromatography. The M r of the native enzyme was estimated to be 380 000 (± 10 000) by polyacrylamide gel electrophoresis. The same technique in the presence of sodium dodecyl sulphate (SDS) gave one subunit band with an M r of 63 400 (±4000). Thus the enzyme has a hexameric structure. The enzyme has a pH optimum of 8.5 and has K m apparent values of 1.6 mM, 0.015 mM and 10.2 mM for α-ketoglutarate, N NADPH and L -glutamate, respectively. Michaelis-Menten kinetics were not observed when the ammonium concentration was increased. A progressive increase in the ammonium concentration resulted in a progressively increasing K m value. The enzyme was highly specific for all substrates and markedly insensitive to inhibitors.  相似文献   

9.
Abstract The utilization of NO3, NO2 and NH+4 was studied in whole filaments and isolated heterocysts of Anabaena 7120 (ATCC27893). NO3- and NO2-uptake were detectable in whole filaments but not in heterocysts, whereas NH+4-uptake was detectable in both. Activity of NO3-reductase was present in cell-free extracts of whole filaments but not of heterocysts, whereas activities of NO2-reductase and glutamine synthetase were present in both. NO3-uptake and reductase activities could not be induced in heterocysts even after prolonged incubation in NO3 medium. It is suggested that NO3-metabolism in heterocysts is impaired due to a selective and irreversible loss of NO3-uptake and reductase systems resulting in the abolition of competition for molybdenum cofactor (Mo-Co) and reductant between nitrogenase and NO3-reductase, and an increase in glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase levels.  相似文献   

10.
11.
12.
Abstract: The characteristics of binding sites in rat cerebral cortical synaptic membranes labeled by 125I-ifenprodil, a noncompetitive NMDA receptor antagonist, are described. 125I-ifenprodil was synthesized using Na125I in the presence of chloramine-T and purified by paper chromatography. Binding of the 125I-ligand was optimal at pH 7.7 in 5 mM Tris · HCl buffer. Equilibrium binding of 125I-ifenprodil was displaced by spermine (1 mM) but not by ifenprodil or its analogue, SL 82.0715 (both 16.7 μM). Zn2+, Ca2+, and Mg2+ inhibited specific binding of 125I-ifenprodil in a concentration-dependent manner, with IC50 values of 0.11, 1.1, and 1.7 mM, respectively. The dissociation constant (KD) for unlabeled ifenprodil determined by saturation binding was 205 nM. Scatchard plots of saturation data appeared curvilinear but were best described by a single-binding-site model (Hill coefficient = 0.95), with a density of binding sites (Bmax) of 141 pmol/mg of protein. Binding of 125I-ifenprodil was inhibited by polyamines, with a rank potency order of spermine > spermidine > putrescine = 1,3-diaminopropane. The pattern of inhibition produced by spermidine was apparently competitive. Ifenprodil congeners also fully inhibited polyamine-sensitive binding of 125I-ifenprodil, with a rank potency order of ifenprodil > SL 82.0715 = tibalosine > nylidrin = isoxsuprine. It was found that σ/antitussive agents partially inhibited specific binding, but inclusion of the σ drug GBR 12909 had little effect on the binding of 125I-ifenprodil, suggesting this site was not involved. The binding site labeled by 125I-ifenprodil is polyamine sensitive, has a discrete pharmacological profile, and apparently is unrelated to the σ site.  相似文献   

13.
Interactive effects of K+ and N (principally NH4+) on plant growth and ion uptake were investigated using hydroponically grown rice (Oryza sativa L. cv. M202) seedlings by varying the availability of NH4+ or NO3? and K+ during an 18d growth period, a 3d pretreatment period and during flux measurements. Plants grew best in media containing 100 mmol m?3 NH4+ and 200mmolm?3 K+ (N100/K200), followed by N2/K200 < N100/K2 < N2/K2. 86Rb+(K+) fluxes were increased by exposure to N during the 18 d growth period and the 3 d of pretreatment, but decreased by the presence of NH4+ during flux measurements. This inhibition was a function of prior N/K provision and the [NH4+]0 present during flux determinations. NH4+ was least inhibitory to 86Rb+(K+) influx in high-N/low-K plants. Pretreatments with K+ failed to stimulate NH4+ uptake, and the presence of K+ in the uptake solutions reduced NH4+ fluxes only in high-N/low-K plants.  相似文献   

14.
When 1 m M spermidine or spermine was included in an absorption solution which contained 20 m M Na+ and 1 m M Rb+, Na+ influx into excised maize roots ( Zea mays L. cv. Golden Cross Bantam) was reduced. Rb+ influx was reduced in the presence of spermidine and uneffected in the presence of spermine when compared with control solutions. When 1 m M Ca2+ replaced the polyamines, Na+ influx was strongly reduced and Rb+ influx was promoted. Rb+ influx from 1 m M Rb+ solutions which did not contain Na+ was also promoted by 1 m M Ca2+, but was inhibited by 1 m M spermidine. This Ca2+ promotion of Rb+ influx could be reversed by 10 times greater concentration of spermidine in the absorption solution. H+ efflux from excised roots was inhibited by spermidine when compared with Ca2+ or control solutions, however, the plasma membrane ATPase was not inhibited by spermidine. It is concluded that external Ca2+ plays two separate roles in membrane function, only one of which can be substituted for by polyamines. The first role, maintenance of membrane integrity, can be substituted for by spermidine or spermine. The second function, maintenance of the Rb+ transport mechanism, is Ca2+ specific and cannot be substituted for by spermidine or spermine. The results of this study are discussed in terms of electrostatic interactions between the plasma membrane and the Ca2+ or polyamines.  相似文献   

15.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

16.
Aluminum is a phytotoxic element in many soils and occurs in a variety of chemical species. In order to determine whether AlSO+4 is toxic, seedlings of wheat (Triticum aestivum L. cv. Tyler) and red clover (Trifolium pratense L. cv. Kenland) were transferred to solutions containing controlled activities of Al3+, AlSO+4, Na+ and Ca2+. Root elongation was inhibited by Al3+ (or mononuclear hydroxy-Al species that are in equilibrium with Al3+), but not by AlSO+4. We assumed a formation constant (KAlSO+4= {AlSO+4}/[{Al3+} {SO2-4}]; braces indicate activities} of 103.2 for AlSO+4 in the computation of ionic activities, but use of KAlSO+4 values ranging from 102.8 to 103.6 had very little effect on the computed toxicities of Al3+ and AlSO+4. Sulfate did not promote the formation of polynuclear Al complexes in our experiments. A practice in studies of Al phytotoxicity has been to attribute toxicity to mononuclear Al, but now it would seem advisable to exclude AlSO+4. That AlSO+4 is non-toxic, or is at least 10-fold less toxic than Al3+, has implications for the physiology of Al toxicity and for the use of sulfate salts in experimental work and in agriculture.  相似文献   

17.
Abstract The stability under alkaline conditions of the membrane of the alkalophile was studied. By an alkaline treatment in the absence of Na+ or Li+, the abilities of the membrane vesicles, when energized with ascorbate plus tetramethylphenylenediamine, to produce a membrane potential (negative, inside) and transmembrane pH gradient (outside > inside) were rapidly lost. The activity of cytochrome oxidase was not affected by the alkaline treatment irrespective of the presence of Na+. It is likely that the membrane structure is sensitive to an alkaline pH and maintained specifically by the presence of Na+ (or Li+) in the alkaline medium.  相似文献   

18.
Two Na^+ and Cl^- Hyperaccumulators of the Chenopodiaceae   总被引:1,自引:0,他引:1  
The authors found five sodium (Na^ ) and chloride (Cl^-) hyperaccumulating halophytes in the Temperate Desert of Xinjiang, China and studied two of them (Suaeda salsa (L.) Pall. and Kalidium folium (Pall.) Moq.). K. folium and S. salsa had a NaCl content of 32.1% and 29.8%, respectively, on a dry weight basis. X-ray microanalysis of the Na in the vacuole, apoplasts and cytoplasm of the two plants indicated a ratio of 7.3:5.6:1.0 in K. folium and 7.3:6.6:1.0 in S. salsa. These data show that K. folium and S. salsa both have a high Na and Cl^- accumulating capacity, which is related to high activity of tonoplast H^ -ATPase and H^ -PPase.  相似文献   

19.
The nucleotide sequence of the G6-amylase gene from alkalophilic Bacillus sp. H-167 was determined. The open reading frame of the gene consisted of 2865 base pairs, encoding 955 amino acids. The NH2-terminal amino acid sequence analysis of the G6-amylase indicated that the enzyme had a single peptide of 33 amino acid residues and the mature enzyme was composed of 922 amino acids, giving a molecular mass of 102598. Identity of the NH2-terminal amino acid sequences among each component of the multiform G6-amylase suggested the proteolytic processing of the COOH-terminal side of the enzyme. The DNA sequence and the deduced amino acid sequence of the G6-amylase gene showed no homology with those of other bacterial α-amylases although the consensus amino acid sequences of the active center were well conserved.  相似文献   

20.
Stomatal function mediates physiological trade‐offs associated with maintaining a favourable H2O balance in leaf tissues while acquiring CO2 as a photosynthetic substrate. The C3 and C4 species appear to have different patterns of stomatal response to changing light conditions, and variation in this behaviour may have played a role in the functional diversification of the different photosynthetic pathways. In the current study, we used gain analysis theory to characterize the stomatal conductance response to light intensity in nine different C3, C4 and C3‐C4 intermediate species Flaveria species. The response of stomatal conductance (gs) to a change in light intensity represents both a direct (related to a change in incident light intensity, I) and indirect (related to a change in intercellular CO2 concentration, Ci) response. The slope of the line relating the change in gs to Ci was steeper in C4 species, compared with C3 species, with C3‐C4 species having an intermediate response. This response reflects the greater relative contribution of the indirect versus direct component of the gs versus I response in the C4 species. The C3‐C4 species, Flaveria floridana, exhibited a C4‐like response whereas the C3‐C4 species, Flaveria sonorensis and Flaveria chloraefolia, exhibited C3‐like responses, similar to their hypothesized position along the evolutionary trajectory of the development of C4 photosynthesis. There was a positive correlation between the relative contribution of the indirect component of the gs versus I response and water use efficiency when evaluated across all species. Assuming that the C3‐C4 intermediate species reflect an evolutionary progression from fully expressed C3 ancestors, the results of the current study demonstrate an increase in the contribution of the indirect component of the gs versus I response as taxa evolve toward the C4 extreme. The greater relative contribution of the indirect component of the stomatal response occurs through both increases in the indirect stomatal components and through decreases in the direct. Increases in the magnitude of the indirect component may be related to the maintenance of higher water use efficiencies in the intermediate evolutionary stages, before the appearance of fully integrated C4 photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号