首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“Mallín” (plural mallines) is a particular kind of wetland occurring in Patagonian steppe and forests. In Northwest Patagonia, mallines are humid meadows with high net primary production. It was previously found that a mallín soil in the steppe devoid of actinorhizal plants had a higher Frankia nodulation capacity in Ochetophila trinervis (sin. Discaria trinervis) than other soils in the region. Under the hypothesis that mallín wetland meadows are reservoir of infective Frankia, we studied the Frankia nodulation capacity in O. trinervis of 12 mallín and their neighbouring steppe soils, by using plant bioassays. A qualitative plant bioassay showed that infective Frankia was present in most soils. The number of nodules per plant in seedlings inoculated with mallín soils was negatively correlated with soil water content while the opposite was true for plants inoculated with soils from neighbouring steppe. A quantitative bioassay was performed with eight representative soils, selected according to the number of nodules per plant produced in the qualitative assay and to the presence or not of different actinorhizal plants at the sites. Frankia nodulation units per cm3 of soil (NU) in mallín soils were higher than those in steppe. Water and organic matter content of soils were correlated with the higher nodulation capacity of mallines, which may account for the saprotrophic growth of Frankia in soils. The symbiosis was effective in plants inoculated with all soil samples. These results suggest that Northwestern Patagonian mallín wetland meadows are reservoirs of infective and effective Frankia propagules in O. trinervis.  相似文献   

2.
Chaia  Eugenia 《Plant and Soil》1998,205(2):99-102
Frankia strain BCU110501 was isolated from root nodules of the native Patagonian actinorhizal plant Discaria trinervis. The strain was grown on BAP medium with sodium propionate or glucose as carbon sources. Colonies grown in nitrogen-free medium showed branched hyphae bearing polymorphic sporangia and vesicles, which were capable of nitrogen fixation. Old cultures produced a red pigment. The infectivity and effectivity of a Frankia strain isolated from Discaria on its own host, D. trinervis and also in D. chacaye, is reported for the first time. Frankia BCU110501 has physiological properties that are intermediate between categories proposed by Lechevalier et al. (1983) to classify Frankia.  相似文献   

3.
Ethylene is produced by plants in response to a wide variety of environmental signals and mediates several developmental processes in higher plants. We investigated whether ethylene has a regulatory function in nodulation in the actinorhizal symbiosis between Discaria trinervis and Frankia BCU110501. Roots of axenic D. trinervis seedlings showed aberrant growth and reduced elongation rate in the presence of ethylene donors [i.e. 2-aminocyclopropane carboxylic acid (ACC) and 2-chloroethylphosphonic acid (CEPA)] in growth pouches. By contrast, inhibitors of ethylene synthesis (aminoethoxyvinylglycine, AVG) or perception (Ag+) did not modify root growth. This indicates that the development of D. trinervis roots is sensitive to elevated ethylene levels in the absence of symbiotic Frankia . The drastic response to higher ethylene levels did not result in a systemic impairment of root nodule development. Nodulation occurred in seedlings inoculated with Frankia BCU110501 in the presence of ethylene donors or inhibitors. Overall, the ability of the seedlings to shut down nodule formation in the younger portions of the root (i.e. to autoregulate nodulation) was not significantly impaired by a modification of endogenous ethylene levels. In contrast, we detected subtle changes in the nodulation pattern of the taproots. As a result of exposing the roots to CEPA, less nodules developed in older portions of the taproot. In line with this observation, AVG or Ag+ caused the opposite effect, i.e. a slight increase in nodulation of the mature regions of the taproot. These results suggest that ethylene is involved in modulating the susceptibility for nodulation of the basal portion of D. trinervis seedling roots.  相似文献   

4.
This study investigates the effect of soil treatment and storage on organic acid extraction. For this study one clayey-loamy (Typic Udochrept) and one sandy-loamy (Aquic Ustifluvent) soil were selected and used to grow Lupinus albus L. plants in a climate chamber. After 4 weeks the rhizosphere soil was sampled and divided into five portions: (a) field moist, no storage; (b) air-dried; (c) oven-dried, (d) field-moist at +4°C for 8 weeks; (e) field-moist at ?20°C for 8 weeks. Organic acid extraction (1:4 w/v) was carried out for each soil portion both in water and in 10 mM NaH2PO4. Organic acid concentration was subsequently determined by reversed-phase high performance liquid chromatography (HPLC). Oxalic, fumaric, malonic and α-ketoglutaric acid were identified in the rhizosphere of both soils but the extractable concentration was significantly higher in the sandy-loamy soil. For both soils NaH2PO4 extracted significantly higher organic acid concentrations than water. Oven drying increased the extractability of organic acids in both soils. Field moist samples (i.e. where no storage occurred) of the sandy-loamy soil showed a similar behaviour than ?20° stored samples whereas the one of the sandy-loamy soil were more close to the air-dried samples. These results indicate that organic acid extraction strongly depends on soil storage as well as on the soil type. Sample storage seems thus to be a crucial issue for the determination of organic acids in rhizosphere soil and needs to be considered prior analysis.  相似文献   

5.
Frankia in acid soils of forests devoid of actinorhizal plants   总被引:1,自引:0,他引:1  
The capacity of some acid forest soils to induce nodulation on a hybrid between Alnus incana (L.) Moench and A. glutinosa (L.) Gaertn. was investigated. Soil was sampled from tree stands devoid for decades of actinorhizal hosts. Seven-week-old Alnus seedlings growing m liquid culture were inoculated with soil dilutions. The nodules were counted after 6 weeks and classified as Sp, if they lacked spores, or as Sp+. if spores were present, according to microscopy of microtome sections. Frankia was found in all the forest soils studied, apart from a soil from a Betula swamp. The highest nodulation capacities on Alnus , caused predominantly by Frankia of the Sp type. were observed in mineral soil sites with Betula stands — even higher than in soil from an A. incana stand. A positive correlation was found between the pH and the noduiation capacity of the soil.  相似文献   

6.
Root nodulation in actinorhizal plants, like Discaria trinervis and Alnus incana, is subject to feedback regulatory mechanisms that control infection by Frankia and nodule development. Nodule pattern in the root system is controlled by an autoregulatory process that is induced soon after inoculation with Frankia. The final number of nodules, as well as nodule biomass in relation to plant biomass, are both modulated by a second mechanism which seems to be related to the N status of the plant. Mature nodules are, in part, involved in the latter process, since nodule excision from the root system releases the inhibition of infection and nodule development. To study the effect of N(2) fixation in this process, nodulated D. trinervis and A. incana plants were incubated under a N(2)-free atmosphere. Discaria trinervis is an intercellularly infected species while A. incana is infected intracellularly, via root hairs. Both symbioses responded with an increment in nodule biomass, but with different strategies. Discaria trinervis increased the biomass of existing nodules without significant development of new nodules, while in A. incana nodule biomass increased due to the development of nodules from new infections, but also from the release of arrested infections. It appears that in D. trinervis nodules there is an additional source for inhibition of new infections and nodule development that is independent of N(2) fixation and nitrogen assimilation. It is proposed here that the intercellular Frankia filaments commonly present in the D. trinervis nodule apex, is the origin for the autoregulatory signals that sustain the blockage of initiated nodule primordia and prevent new roots from infections. When turning to A. incana plants, it seems likely that this signal is related to the early autoregulation of nodulation in A. incana seedlings and is no longer present in mature nodules. Thus, actinorhizal symbioses belonging to relatively distant phylogenetic groups and displaying different infection pathways, show different feedback regulatory processes that control root nodulation by Frankia.  相似文献   

7.
During the dry season (early May through September of 1994), following a fall 1993 wildfire, a survey of seedling nodulation was conducted at several sites in the Santa Monica Mountains of Southern California. Seedlings of Ceanothus spinosus, C. megacarpus, C. oliganthus , and C. cuneatus were manually excavated. During this period, only 12 of the 182 seedlings excavated were nodulated, and all of the nodulated seedlings were found in the relatively moist clay soils of a stream bank. No nodules were observed on the 170 seedlings excavated from the drier sites. An irrigation experiment was established in midsummer to assess whether water stress inhibits nodulation of post-fire Ceanothus seedlings. Four plots with numerous seedlings of C. cuneatus and C. spinosus were irrigated with distilled water and monitored over a 9-week period. There was a significant increase in nodulation frequency, water potential, stomatal conductance, transpiration, shoot elongation, and photosynthetic rate of irrigated seedlings compared with adjacent controls. Although these data support the hypothesis that water stress inhibits nodulation. it is unclear whether this is because of an effect of soil moisture on the nodulation capacity of the soils (i.e. on the size and physiological state of the soil Frankia population) or to a host plant response to drought which might prevent actinorhizal root infection and/or nodule development.  相似文献   

8.
High-N(2)-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [(15)N]NO(3) and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N(2) fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N(2) fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% +/- 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% +/- 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% +/- 6%) than by group IV (81% +/- 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N(2) fixation rates by (15)N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N(2)-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N(2)-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance.  相似文献   

9.
Summary The occurrence and the infectivity of Frankia, the root-nodule endophyte ofAlnus glutinosa, were studied in different kinds of soil in the Netherlands. Both field and pot experiments indicated that many soils, on which alders have not been grown before, had low numbers of endogenous Frankia or none at all. Inoculation of these soils usually enhanced growth and nodulation of alders.The effect of fertilizer treatments on growth and nodulation ofA. glutinosa were studied in experimental plots. Alders grown in sandy soils, dressed with farmyard manure had the highest yield and the most nodules. The influence of inoculation with homogenates of Sp(+) and Sp(–) nodules and with a pure culture of Frankia AvcIl were studied in pot experiments. The quantity of different kinds of inoculum needed to obtain good growth and nodulation of alder was estimated. The results indicated that addition of a nodule homogenate of 90 g fresh AvcIl Sp(+) nodules is sufficient to inoculate one hectare of nursery soil to produce 10 nodules per plant, while a thousand times larger amount of inoculum is necessary when Sp(–) nodules are used. The limitations and the potentials of using nodule homogenates and pure cultures of Frankia for inoculation in forestry are discussed.  相似文献   

10.
11.
The presence of Frankia strains in soil samples collected from northern areas of Pakistan was detected by inoculating Coriaria nepalensis and Datisca cannabina plants. The abundance of compatible Frankia strains in some areas was indicated by profuse nodulation of the host plants, whereas soil samples from other localities failed to result in nodulation. An oligonucleotide probe (COR/DAT) directed against the 16S rRNA gene of the endophytes of Coriaria and Datisca spp. that did not cross-react with the RNA gene of Frankia strains isolated from other hosts was developed. Genetic diversity among Frankia strains nodulating D. cannabina was determined by sequence analysis of the partial 16S rRNA gene amplified from nodules induced by soil samples from different localities by PCR. Four types of Frankia sequences and one non-Frankia sequence were detected by hybridization with a Frankia genus probe and the COR/DAT probe as well as by sequence analysis of the cloned PCR products.  相似文献   

12.
Macroconidia of Sporidesmium sclerotivorum, a mycoparasite of Sclerotinia spp., germinated after 3 days in soil adjacent to sclerotia of S. minor and on membrane filters placed on soil containing sclerotia. Germination increased with time up to 18 days and with concentration of sclerotia. Conidia as distant as 9 mm from single sclerotia germinated. Germination of conidia was maximum on a sclerotial agar medium in the range of pH 5 to pH 7. Cultivation of S. sclerotivorum parasitically on living sclerotia proceeded optimally in moist, fine quartz sand amended with 1 to 2% (w/w) sclerotia and 0.07% (w/w) CaCO3, at 25 degrees C. Infection of sclerotia in sand reached 100% by 5 weeks. Conidia production paralled infection resulting in logarithmic increase in numbers; a maximum of 3 x 10(5) to 4 x 10(5) conidia/g was reached in 6 to 12 weeks. Viability of air-dried sand-sclerotial cultures of S. sclerotivorum was reduced after 1 and 6 days, but viability was undiminished in air-dried soil. Sporidesmium sclerotivorum survived in moist and air-dried soils stored at room temperature for 15 months.  相似文献   

13.
The time course of initiation and development of root nodules was investigated in the South American actinorhizal shrub Discaria trinervis (Rhamnaceae). A local strain of Frankia (BCU110501) which was isolated from D. trinervis nodules, was used as inoculum. Inoculated seedlings were periodically studied under the light microscope after clearing with aqueous NaClO. In parallel, semithin and ultrathin sections were analysed by light and electron microscopy. Infection by Frankia BCU110501 involved intercellular penetration among epidermal and cortical root cells. Nodule primordia were detected from 6 d after inoculation, while bacteria were progressing through intercellular spaces of the outer layers of cortical cells. Invasion of host cells by the symbiont occurred 7–9 d after inoculation, and hypertrophy of the primordium cells was associated with Frankia penetration. Root hairs were not deformed during the early events of nodule formation. From 13 to 16 d after inoculation, the proximal cellular zone of the primordia behaved differently from the other tissues after NaClO treatment and remained darkly pigmented. At the same time, differentiation of Frankia vesicles started to occur inside already infected cells. By 16 d after inoculation, spherical vesicles of BCU110501 were homogeneously distributed in the host cells. These vesicles were septate and surrounded by void space. Frankia spores or sporangia were not observed in the nodule tissue. This study has clarified the mode of Frankia penetration in D. trinervis , one of the Rhamnaceae which also includes Ceanothus . The events involved in infection, nodule induction, host-cell infection and vesicle differentiation have been characterized and identified as time-segregated developmental processes in the ontogeny of D. trinervis root nodules.  相似文献   

14.
AIMS: To determine the fate of the enteric indicator organism, Escherichia coli, in sewage sludge (biosolids)-amended agricultural soil in relation to soil type and moisture status under controlled conditions. METHODS AND RESULTS: We enumerated Escherichia coli in soil by membrane filtration and most probable number techniques. The background concentration of E. coli was higher in sandy loam than in silty clay soil. E. coli numbers increased in soil following addition of dewatered, mesophilic anaerobically digested sludge. Escherichia coli declined to a small extent with time in both moist and air-dried unamended control soils, although decay was only highly significant (P < 0.001) in moist sandy loam (T(90) = 100 days). Removal rates were high in sludge-treated moist soil (T(90) = 20 days), but were significantly reduced in amended air-dried soil. CONCLUSIONS: Slow removal of E. coli in air-dried soil as against their rapid decay in moist soil after sludge application indicated that the soil biota are involved in pathogen reduction processes in sludge-amended soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Soil ecological mechanisms are implicated as having a critical role in the fate of enteric organisms introduced into temperate agricultural soil in sewage sludge.  相似文献   

15.
Effect of drying and rewetting on bacterial growth rates in soil   总被引:6,自引:0,他引:6  
The effect of soil moisture on bacterial growth was investigated, and the effects of rewetting were compared with glucose addition because both treatments increase substrate availability. Bacterial growth was estimated as thymidine and leucine incorporation, and was compared with respiration. Low growth rates were found in air-dried soil, increasing rapidly to high stable values in moist soils. Respiration and bacterial growth at different soil moisture contents were correlated. Rewetting air-dried soil resulted in a linear increase in bacterial growth with time, reaching the levels in moist soil (10 times higher) after about 7 h. Respiration rates increased within 1 h to a level >10 times higher than that in moist soil. After the initial flush, there was a gradual decrease in respiration rate, while bacterial growth increased to levels twice that of moist soil 24 h after rewetting, and decreased to levels similar to those in moist soil after 2 days. Adding glucose resulted in no positive effect on bacterial growth during the first 9 h, despite resulting in more than five times higher respiration. This indicated that the initial increase in bacterial growth after rewetting was not due to increased substrate availability.  相似文献   

16.
Summary The infective potential (IP) of nodule homogenates from field-grownHippophaë rhamnoides L. ssp.rhamnoides was determined by counting the number of nodules formed on test plants after inoculation with various dilutions of the homogenates. The IP was almost constant,i.e. 105 to 106 per gram of fresh nodule material. Methods to store nodule material without loss of IP were tested. The IP of air-dried nodule powders stored at 6°C hardly decreased during a period of more than a year.Data are presented on the IP of soil samples from sites representing various stages of dune formation. BeforeH. rhamnoides appeared, the IP was low: 1 to 36 nodules were formed on test plants per kg of soil. This low IP was due to low numbers of infective endophyte particles in these soils. During the succession of theH. rhamnoides scrub, the IP of the soil increased, due to the increase in the number of endophyte particles in the soil. Gradually, however, nodulation was limited by other environmental factors. The nature of these factors is discussed.  相似文献   

17.
The presence of Escherichia coli in water is used as an indicator of fecal contamination, but recent reports indicate that soil populations can also be detected in tropical, subtropical, and some temperate environments. In this study, we report that viable E. coli populations were repeatedly isolated from northern temperate soils in three Lake Superior watersheds from October 2003 to October 2004. Seasonal variation in the population density of soilborne E. coli was observed; the greatest cell densities, up to 3 x 10(3) CFU/g soil, were found in the summer to fall (June to October), and the lowest numbers, < or =1 CFU/g soil, occurred during the winter to spring months (February to May). Horizontal, fluorophore-enhanced repetitive extragenic palindromic PCR (HFERP) DNA fingerprint analyses indicated that identical soilborne E. coli genotypes, those with > or =92% similarity values, overwintered in frozen soil and were present over time. Soilborne E. coli strains had HFERP DNA fingerprints that were unique to specific soils and locations, suggesting that these E. coli strains became naturalized, autochthonous members of the soil microbial community. In laboratory studies, naturalized E. coli strains had the ability to grow and replicate to high cell densities, up to 4.2 x 10(5) CFU/g soil, in nonsterile soils when incubated at 30 or 37 degrees C and survived longer than 1 month when soil temperatures were < or =25 degrees C. To our knowledge, this is the first report of the growth of naturalized E. coli in nonsterile, nonamended soils. The presence of significant populations of naturalized populations of E. coli in temperate soils may confound the use of this bacterium as an indicator of fecal contamination.  相似文献   

18.
Studies on the phosphate potentials of soils   总被引:1,自引:0,他引:1  
R. E. White 《Plant and Soil》1964,20(2):184-193
Summary When a sample of Upper Greensand soil was shaken in dilute solutions of calcium chloride containing orthophosphate, microbial activity was sufficiently stimulated to alter the measured value of Schofield's phosphate potential. The effect was more rapid and more marked for air-dried than for field-moist soils. However, the effect on the potentialSP was not significant during the first 2 to 4 hours of shaking a moist sample, and probably not significant during the first 1/2 to 1 hour of shaking an air-dried sample.It was also shown that the changes in the phosphate potentialSP during the first few hours of shaking an untreated field sample are not due to microbial interference. These changes appear to result from the co-existence, in field soils, of micro-volumes of soil of potentialSP higher and lower than the mean for the soil (Part I, and Part III, in preparation).  相似文献   

19.
Y. Lundell 《Plant and Soil》1987,98(3):363-375
Summary This study was carried out in order to assess the importance of storage procedures and time of sampling for the results of routine chemical analyses of forest soils. Humus and mineral soil samples were collected at five-week intervals during two growing seasons from a sample plot in a coniferous forest in northern Sweden. The samples were either air-dried (+35°C) or frozen (−20°C). After a few months they were analysed for ‘easily available’ and ‘relatively available’ phosphorus (P-AL and P-HCl) and potassium (K-AL and K-HCl), ammonium, nitrate and pH. In some cases there was a significant difference between the two sample treatments. In humus, the concentrations of P-AL and NH4-N were 51% and 76% higher in samples which had been frozen than in those which had been air-dried while the concentrations of NO3-N were 75% higher. in air-dried than in frozen samples. In mineral soil samples, 21–64% higher concentrations of K-AL were found in frozen samples compared to air-dried and 80–427% higher concentrations of NO3-N in air-dried than in frozen samples. No distinct seasonal variations were found for any of the parameters.  相似文献   

20.
【目的】评估土壤长期保存(4个月)对土壤微生物群落代谢活性的影响。【方法】采用Biolog? EcoPlateTM生态板研究4 °C风干保存和?20 °C低温冻存的农田土壤和森林土壤中微生物群落的碳源利用模式。【结果】与新鲜土壤样品相比,长期保存的土壤样品的微生物群落对碳源的利用能力大大降低,其多样性、均匀度和Simpson指数均降低;风干保存和低温冻存两者对土壤微生物的碳源利用的影响没有显著差异;除风干保存的土壤样品中利用多聚物类的微生物类群的代谢活性外,两种保存方法显著降低微生物群落的代谢活性,降低幅度为54.5%–99.8%。【结论】长期保存土壤可能会导致对微生物群落信息的低估,土壤微生物代谢活性研究的最佳样品为新鲜 土壤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号