首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
The type XXVII collagen gene codes for a novel vertebrate fibrillar collagen that is highly conserved in man, mouse, and fish (Fugu rubripes). The pro(alpha)1(XXVII) chain has a domain structure similar to that of the type B clade chains (alpha1(V), alpha3(V), alpha1(XI), and alpha2(XI)). However, compared with other vertebrate fibrillar collagens (types I, II, III, V, and XI), type XXVII collagen has unusual molecular features such as no minor helical domain, a major helical domain that is short and interrupted, and a short chain selection sequence within the NC1 domain. Pro(alpha)1(XXVII) mRNA is 9 kb and expressed by chondrocytes but also by a variety of epithelial cell layers in developing tissues including stomach, lung, gonad, skin, cochlear, and tooth. By Western blotting, type XXVII antisera recognized multiple bands of 240-110 kDa in tissue extracts and collagenous bands of 150-140 kDa in the conditioned medium of the differentiating chondrogenic ATDC5 cell line. Phylogenetic analyses revealed that type XXVII, together with the closely related type XXIV collagen gene, form a new, third clade (type C) within the vertebrate fibrillar collagen family. Furthermore, the exon structure of the type XXVII collagen gene is similar to, but distinct from, those of the genes coding for the type A or B clade pro(alpha) chains.  相似文献   

2.
Complete primary structure of human collagen alpha 1 (V) chain   总被引:4,自引:0,他引:4  
Several cDNA clones, encoding prepropeptide of human collagen alpha 1(V) chain, have been isolated. The prepropeptide (1838 amino acids length) of the alpha 1(V) chain was composed of a putative signal peptide, a large NH2-terminal noncollagenous region, a main collagenous region, and a COOH-terminal noncollagenous region. The signal peptide contained many leucine residues. The NH2-terminal noncollagenous region was much larger than those of the other collagens and had a region homologous to the COOH-terminal domain of laminin A chain, but it did not contain a cysteine-rich region that was maintained in the region of the other collagens. This region also contained probable tyrosine sulfation sites, and short collagenous sequences that were interrupted by three noncollagenous segments. The main collagenous region of the alpha 1(V) chain consisted of 338 repeats of Gly-X-Y-triplet. This region had a high degree (82%) of homology with the amino acids of the collagen alpha 1(XI) chain. The COOH-terminal noncollagenous region resembled that of the alpha 1(XI) chain, too, and 8 residues of cysteine that were important for the formation of the triple helix structure of collagens were observed. These results suggest that the alpha 1(V) chain belongs to the fibrillar collagen relative to the alpha 1(XI) chain, but codon usage of the alpha 1(V) cDNA was clearly different from those of the other fibrillar collagens including the alpha 1(XI), while it was similar to type IV collagen. This result supposes a different evolution of the alpha 1(V) gene from those of the other fibrillar collagens.  相似文献   

3.
Collagen is the most abundant protein of mammals and produces highly organized ultrastructures in the extracellular matrix. There are at least 27 types of collagen in mammalian tissues. While fibrillar collagen (eg. types I, II, III, V and XI) assembles into large fibril structures in the extracellular matrix, type IV collagen produces meshwork-like structures in the basement membranes. As collagen has a distinct triple helix structure composed of Gly-X-Y repeats whose Y position is often hydroxyproline, its folding and maturation process differs considerably from globular proteins. Type I collagen is an assembly of two alpha-1 chains and one alpha-2 chain, and each of the alpha chains contain the N-terminal propeptide, C-terminal propeptide and central triple helical region. The 47-kDa heat shock protein (HSP47) is an endoplasmic reticulum (ER)-resident molecular chaperone that specifically recognizes the triple helical region of collagen and is required for productive folding and maturation of collagen molecules. Only in the presence of HSP47, collagen type I molecules can be assembled into the correctly folded triple helices in the ER of mouse embryos without producing misfolded or non-functionally aggregated molecules. HSP47-knockout embryos die just after 10.5 day due to the absence of functional collagen. Recent our data demonstrated that the non-fibrillar network-forming collagen type IV also requires HSP47 for productive folding and maturation. Here, we discuss the role of HSP47 in the folding and maturation of collagen type IV as well as type I.  相似文献   

4.
5.
Genes for tetrapod fibrillar procollagen chains can be divided into two clades, A and B, based on sequence homologies and differences in protein domain and gene structures. Although the major fibrillar collagen types I–III comprise only clade A chains, the minor fibrillar collagen types V and XI comprise both clade A chains and the clade B chains pro-α1(V), pro-α3(V), pro-α1(XI) and pro-α2(XI), in which defects can underlie various genetic connective tissue disorders. Here we characterize the clade B procollagen chains of zebrafish. We demonstrate that in contrast to the four tetrapod clade B chains, zebrafish have six clade B chains, designated here as pro-α1(V), pro-α3(V)a and b, pro-α1(XI)a and b, and pro-α2(XI), based on synteny, sequence homologies, and features of protein domain and gene structures. Spatiotemporal expression patterns are described, as are conserved and non-conserved features that provide insights into the function and evolution of the clade B chain types. Such features include differential alternative splicing of NH2-terminal globular sequences and the first case of a non-triple helical imperfection in the COL1 domain of a clade B, or clade A, fibrillar procollagen chain. Evidence is also provided for previously unknown and evolutionarily conserved alternative splicing within the pro-α1(V) C-propeptide, which may affect selectivity of collagen type V/XI chain associations in species ranging from zebrafish to human. Data presented herein provide insights into the nature of clade B procollagen chains and should facilitate their study in the zebrafish model system.  相似文献   

6.
The fibrillar collagen types I, II, and V/XI have recently been shown to have partially 3-hydroxylated proline (3Hyp) residues at sites other than the established primary Pro-986 site in the collagen triple helical domain. These sites showed tissue specificity in degree of hydroxylation and a pattern of D-periodic spacing. This suggested a contributory role in fibril supramolecular assembly. The sites in clade A fibrillar α1(II), α2(V), and α1(I) collagen chains share common features with known prolyl 3-hydroxylase 2 (P3H2) substrate sites in α1(IV) chains implying a role for this enzyme. We pursued this possibility using the Swarm rat chondrosarcoma cell line (RCS-LTC) found to express high levels of P3H2 mRNA. Mass spectrometry determined that all the additional candidate 3Hyp substrate sites in the pN type II collagen made by these cells were highly hydroxylated. In RNA interference experiments, P3H2 protein synthesis was suppressed coordinately with prolyl 3-hydroxylation at Pro-944, Pro-707, and the C-terminal GPP repeat of the pNα1(II) chain, but Pro-986 remained fully hydroxylated. Furthermore, when P3H2 expression was turned off, as seen naturally in cultured SAOS-2 osteosarcoma cells, full 3Hyp occupancy at Pro-986 in α1(I) chains was unaffected, whereas 3-hydroxylation of residue Pro-944 in the α2(V) chain was largely lost, and 3-hydroxylation of Pro-707 in α2(V) and α2(I) chains were sharply reduced. The results imply that P3H2 has preferred substrate sequences among the classes of 3Hyp sites in clade A collagen chains.  相似文献   

7.
We recently cloned and sequenced alpha 1 (VIII) collagen cDNAs and demonstrated that type VIII collagen is a short-chain collagen that contains both triple helical and carboxyl-terminal non-triple helical domains similar to those of type X collagen (Yamaguchi, N., Benya, P., van der Rest, M., and Ninomiya, Y. (1989) J. Biol. Chem. 264, 16022-16029). We report here on the structural organization of the gene encoding the rabbit alpha 1 (VIII) collagen chain. The alpha 1 (VIII) gene contains four exons, whose sizes are 69, 120, 331, and 2278 base pairs. The first and second exons encode only 5'-untranslated sequences, whereas the third exon codes for a very short (3 nucleotides) stretch of 5'-untranslated sequence, the signal peptide, and almost the entire amino-terminal non-triple helical (NC2) domain (109 1/3 codons). Interestingly, the last exon encodes the rest of the translated region, including 7 2/3 codons of the NC2 domains, the complete triple helical domain (COL1, 454 amino acid residues), the entire carboxyl-terminal non-triple helical domain (NC1, 173 amino acid residues), and the 3'-untranslated region. This exon-intron structure is in stark contrast to the multi-exon structure of the fibrillar collagen (types I, II, III, V, and XI) genes, but it is remarkably similar to that of the type X collagen gene (LuValle, P., Ninomiya, Y., Rosenblum, N. D., and Olsen, B. R. (1988) J. Biol. Chem. 263, 18278-18385). The data suggest that the alpha 1 (VIII) and the alpha 1 (X) genes belong to the same subclass within the collagen family and that they arose from a common evolutionary precursor.  相似文献   

8.
Type V collagen was prepared from human amnionic/chorionic membranes and separated into alpha 1(V) and alpha 2(V) polypeptide chains. The alpha 1(V) chain was digested with cyanogen bromide and nine peptides were obtained and purified. Three of the peptides, alpha 1(V)CB1, CB4, and CB7 having molecular weights of 5000, 8000, and 6000, respectively, were further analyzed by amino acid sequence analysis and thermolytic or tryptic digestions. CB1 contained 54 amino acids and identification of its complete sequence was aided by thermolysin digestion and isolation of two peptides, Th1 and Th2. CB4 contained 81 amino acids and sequence analysis of intact CB4 and five tryptic peptides provided us with its complete amino acid sequence. The peptide CB7 contained 67 amino acids and was cleaved into four tryptic peptides that were used for complete sequence analysis. The above results represent the first available covalent structure information on the alpha 1(V) collagen chain. These data enabled us to establish the location of these peptides within the helical structure of other collagen chains. CB4 was homologous to residues 66-145 in the collagen chain while CB1 represented residues 146-200 and CB7 was homologous with residues 201-269. This alignment was facilitated by identification of a helical collagen crossing site consisting of Hyl-Gly-His-Arg located at positions 87-90 in all collagen chains of this size thus far identified. Seventy-one percent homology (excluding Gly residues) was found between amino acids in this region of the alpha 1(XI) and of alpha 1(V) collagen chains while only 21 and 19% identity was calculated for the same region of alpha 2(V) and alpha 1(I) collagen chains, respectively.  相似文献   

9.
Partial covalent structure of the human alpha 2 type V collagen chain   总被引:5,自引:0,他引:5  
Human cDNA libraries were screened with a cDNA fragment presumably encoding the 3' terminus of a procollagen carboxyl propeptide not identifiable as types I, II, III, or IV by protein sequence or Northern blot hybridization. One clone contained a 1350-base pair insert coding in part for 55 uninterrupted Gly-X-Y triplets. Comparison with the amino acid composition of the COOH-terminal cyanogen bromide (CB) peptides of the alpha 1 and alpha 2 type V collagen chains showed similarity only to the alpha 2(V)CB fragment. To identify the NH2 terminus of the peptide designated by methionine, an additional isolate was sequenced and found to contain a Gly-Met-Pro triplet. Thirty-one amino acids from the NH2 terminus of the alpha 2(V)CB9 fragment were then determined by Edman degradation and found to be identical to those derived from the cDNA clone. The DNA sequence encoding part of the triple helical region establishes for the first time the partial structure of a type V collagen chain. Although comparison of residues 796-1020 of the alpha 2(V) collagenous region with alpha 1 (III), alpha 1(I), and alpha 2(I) shows strong conservation of charged positions, the latter three chains appear considerably more similar to each other than to alpha 2(V). A striking feature of the alpha 2(V) sequence between 918-944 is the absence of proline residues. In the analogous region of alpha 1(I) where this amino acid is also lacking, a flexible site in the rigid triple helical structure of type I collagen has been observed (Hofmann, H., Voss, T., Kuhn, K. and Engel, J. (1984) J. Mol. Biol. 172, 325-343).  相似文献   

10.
The thermal triple helix to coil transitions of two human type V collagens (alpha 1(2) alpha 2 and alpha 1 alpha 2 alpha 3) and bovine type XI collagen differ from those of the interstitial collagens type I, II, and III by the presence of unfolding intermediates. The total transition enthalpy of these collagens is comparable to the transition enthalpy of the interstitial collagens with values of 17.9 kJ/mol tripeptide units for type XI collagen, 22.9 kJ/mol for type V (alpha 1(2) alpha 2), and 18.5 kJ/mol for type V (alpha 1 alpha 2 alpha 3). It is shown by optical rotatory dispersion and differential scanning calorimetry that complex transition curves with stable intermediates exist. Type XI collagen has two main transitions at 38.5 and 41.5 degrees C and a smaller transition at 40.1 degrees C. Type V (alpha 1(2) alpha 2) shows two main transitions at 38.2 and 42.9 degrees C and two smaller transitions at 40.1 and 41.3 degrees C. Compared to these two collagens type V (alpha 1 alpha 2 alpha 3) unfolds at a lower temperature with two main transitions at 36.4 and 38.1 degrees C and two minor transitions at 40.5 and 42.9 degrees C. The intermediates present at different temperatures are characterized by resistance to trypsin digestion, length measurements of the resistant fragments after rotary shadowing, and amino-terminal sequencing. One of the intermediate peptides has been identified as belonging to the alpha 2 type V chain, starting at position 430 and being about 380 residues long. (The residue numbering begins with the first residue of the first amino-terminal tripeptide unit of the main triple helix. The alpha 2(XI) chain was assumed to be the same length as the alpha 1(XI). One intermediate was identified from the alpha 2(XI) chain and with starting position at residue 495, and three from the alpha 3(XI) with starting positions at residues 519, 585, and 618.  相似文献   

11.
Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage   总被引:14,自引:0,他引:14  
Human recombinant stromelysin-1 was shown to cleave four types of collagen (types II, IX, X, and XI) prepared from bovine and rat cartilages at specific sites. Stromelysin-1 cleaved salt-soluble native molecules of type IX collagen into two main triple-helical fragments, COL1 and COL2,3. Protein microsequencing identified the exact cleavage sites in the NC2 domain of all three chains, alpha 1(IX), alpha 2(IX), and alpha 3(IX). Stromelysin-1 also acted as a "telopeptidase," in that it efficiently clipped intact molecules of types II and XI collagens at sites just inside their terminal cross-linking hydroxylysine residues. Native molecules of type X collagen were cleaved by stromelysin-1 within their triple helical domains at a COOH-terminal site that reduced the alpha 1(X) chain size by 10 kDa. These findings suggest an important role for stromelysin in the turnover and remodeling of the collagenous matrix of cartilage both normally and in degenerative joint disease.  相似文献   

12.
13.
A full-length cDNA of the Type I procollagen alpha1 [pro-alpha1(I)] chain (4388 bp), coding for 1463 amino acid residues in the total length, was determined by RACE PCR using a cDNA library constructed from 4-week embryo of the skate Raja kenojei. The helical region of the skate pro-alpha1(I) chain consisted of 1014 amino acid residues - the same as other fibrillar collagen alpha chains from higher vertebrates. Comparison on denaturation temperatures of Type I collagens from the skate, rainbow trout (Oncorhynchus mykiss) and rat (Rattus norvegicus) revealed that the number of Gly-Pro-Pro and Gly-Gly in the alpha1(I) chains could be directly related to the thermal stability of the helix. The expression property of the skate pro-alpha1(I) chain mRNA and phylogenetic analysis with other vertebrate pro-alpha1(I) chains suggested that skate pro-alpha1(I) chain could be a precursor form of the skate Type I collagen alpha1 chain. The present study is the first evidence for the primary structure of full-length pro-alpha1(I) chain in an elasmobranch.  相似文献   

14.
Molecular mechanisms controlling the assembly of cartilage-specific types II, IX and XI collagens into a heteropolymeric network of uniformly thin, unbanded fibrils are not well understood, but collagen XI has been implicated. The present study on cartilage from the homozygous chondrodysplasia (cho/cho) mouse adds support to this concept. In the absence of alpha1(XI) collagen chains, thick, banded collagen fibrils are formed in the extracellular matrix of cho/cho cartilage. A functional knock-out of the type XI collagen molecule has been assumed. We have re-examined this at the protein level to see if, rather than a complete knock-out, alternative type XI chain assemblies were formed. Mass spectrometry of purified triple-helical collagen from the rib cartilage of cho/cho mice identified alpha1(V) and alpha2(XI) chains. These chains were recovered in roughly equal amounts based on Coomassie Blue staining of SDS-PAGE gels, in addition to alpha1(II)/alpha3(XI) collagen chains. Using telopeptide-specific antibodies and Western blot analysis, it was further shown that type V/XI trimers were present in the matrix cross-linked to each other and to type II collagen molecules to form heteropolymers. Cartilage from heterozygous (cho/+) mice contained a mix of alpha1(V) and alpha1(XI) chains and a mix of thin and thick fibrils on transmission electron microscopy. In summary, the results imply that native type XI collagen molecules containing an alpha1(XI) chain are required to form uniformly thin fibrils and support a role for type XI collagen as the template for the characteristic type II collagen fibril network of developing cartilage.  相似文献   

15.
Collagen type XI is a component of hyaline cartilage consisting of alpha 1(XI), alpha 2(XI), and alpha 3(XI) chains; with 5-10% of the total collagen content, it is a minor but significant component next to type II collagen, but its function and precise localization in cartilaginous tissues is still unclear. Owing to the homology of the alpha 3(XI) and alpha 1(II) collagen chains, attempts to prepare specific antibodies to native type XI collagen have been unsuccessful in the past. In this study, we report on the preparation and use for immunohistochemistry of a polyclonal antibody specific for alpha 2(XI) denatured collagen chains. The antibody was prepared by immunization with the isolated alpha 2(XI) chain and reacts neither with native type XI collagen nor type I, II, V, or IX by ELISA or immunoblotting, nor with alpha 1(XI) or alpha 3(XI), but with alpha 2(XI) chains. Using this antibody, it was possible to specifically localize alpha 2(XI) in cartilage by pretreating tissue sections with 6 M urea. In double immunofluorescence staining experiments, the distribution of alpha 2(XI) as indicative for type XI collagen in fetal bovine and human cartilage was compared with that of type II collagen, using a monoclonal antibody to alpha 1(II). Type XI collagen was found throughout the matrix of hyaline cartilage. However, owing to cross-reactivity of the monoclonal anti-alpha 1(II) with alpha 3(XI), both antibodies produced the same staining pattern. Cellular heterogeneity was, however, detected in monolayer cultures of human chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The biosynthesis of collagen by the A204 cell line was examined using polyclonal antibodies raised against collagen type V and type XI. The study of the pepsin-digested collagen showed that it is composed mainly of alpha 1(XI) and alpha 2(V) collagen chains in an apparent 2:1 ratio, suggesting the formation of heterotypic molecules [alpha 1(XI)]2 alpha 2(V). The existence of this chain stoichiometry was further demonstrated by immunoprecipitation of the molecule with an antibody recognizing alpha 2(V) but not alpha 1(XI) collagen chains. Electron microscopy analyses of 24-h cultures showed that this matrix is composed of thin fibrils, that can be decorated with immunogold-labelled anti-(type-V collagen) IgG, but not with anti-(type-XI collagen) IgG. The collagen matrix laid down by A204 cells is highly insoluble. In the presence of beta-aminopropionitrile, an inhibitor of lysyl oxidase, only a small proportion of intact collagen could be extracted without proteolytic treatment. Immunoblotting of intact medium collagen from cultures performed in the presence of beta-aminopropionitrile showed four distinct bands with each antibody. The migration of the bands, stained with anti-(type-V collagen) IgG, had apparent molecular masses of 127, 149, 161 and 198 kDa (compared to globular standards) while the bands stained with anti-(type-XI collagen) IgG had apparent masses of 145, 182, 207 and 225 kDa. These data indicate that type-V and type-XI collagen chains can assemble in heterotypic isoforms. In this system, the synthesized isoforms are able to aggregate into a highly cohesive matrix and they undergo a proteolytic processing closely similar to that of other fibrillar collagens.  相似文献   

17.
Recently we presented the partial covalent structure of a type V collagen chain. Analysis of amino acids 796-1020 in the human alpha 2(V) Gly-X-Y region showed strong conservation of charged positions with the interstitial collagens but also revealed substitutions unique to type V. To gain more information about this procollagen and primarily to resolve the ambiguous nature of the 3' noncollagenous propeptide, we sequenced several cDNA clones coding for amino acids adjacent to the carboxyl end of the alpha chain. Here we report the complete primary structure of the alpha 2(V) COOH-terminal propeptide. In general, the latter sequence (270 residues) bears a greater degree of similarity to those of the interstitial rather than the basement membrane procollagens. Compared to the interstitial procollagens, however, more divergence has occurred in alpha 2(V) surrounding the conserved N-asparaginyl-linked carbohydrate attachment site at residues 171-173, and alpha 2(V) possesses an additional potential glycosylation site (Asn-Lys-Thr) located in a hypervariable region near the NH2 terminus. Although certainly premature to form any rigid hypothesis, a pattern emerges that may be characteristic of alpha 2 versus alpha 1 chains. Both the alpha 2(I) and alpha 2(V) telopeptides are devoid of a lysine, which in alpha 1 chains forms an interchain cross-link with residue 87 of the collagenous region. Also in contrast to the interstitial alpha 1 carboxyl propeptides is the absence in alpha 2(I) and alpha 2(V) of a cysteine that probably participates in an interchain disulfide bond. Therefore, one can speculate that those alpha 2 chains, represented only once in procollagen trimers, may not be under the same selective pressure as alpha 1 chains to maintain certain residues responsible for stabilizing the triple helical molecules.  相似文献   

18.
C Niyibizi  D R Eyre 《FEBS letters》1989,242(2):314-318
Type V collagen prepared from bovine bone was resolved into three distinct alpha-chains by high performance liquid chromatography and gel electrophoresis. Peptide mapping established two chains as alpha 1(V) and alpha 2(V) as expected and the third as the cartilage alpha 1(XI) chain (previously thought to be unique to cartilage). In adult bone, the type V collagen fraction was richer in alpha 1(XI) chains than in fetal bone (about 1/3 of the chains in the adult). How these polypeptides are organized into native molecules is not yet clear, though the stoichiometry suggests cross-type heterotrimers between the type V and XI chains.  相似文献   

19.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:15,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

20.
Using competitive binding experiments, it was found that native type XI collagen binds heparin, heparan sulfate, and dermatan sulfate. However, interactions were not evident with hyaluronic acid, keratan sulfate, or chondroitin sulfate chains over the concentration range studied. Chondrocyte-matrix interactions were investigated using cell attachment to solid phase type XI collagen. Pretreatment of chondrocytes with either heparin or heparinase significantly reduced attachment to type XI collagen. Incubation of denatured and cyanogen bromide-cleaved type XI collagen with radiolabeled heparin identified sites of interaction on the alpha1(XI) and alpha2(XI) chains. NH(2)-terminal sequence data confirmed that the predominant heparin-binding peptide contained the sequence GKPGPRGQRGPTGPRGSRGAR from the alpha1(XI) chain. Using rotary shadowing electron microscopy of native type XI collagen molecules and heparin-bovine serum albumin conjugate, an additional binding site was identified at one end of the triple helical region of the collagen molecule. This coincides with consensus heparin binding motifs present at the amino-terminal ends of both the alpha1(XI) and the alpha2(XI) chains. The contribution of glycosaminoglycan-type XI collagen interactions to cartilage matrix stabilization is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号