首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin 1, derived from human placenta, stimulates plasminogen activator activity in human articular chondrocytes. The stimulation of plasminogen activator activity can be abolished by preincubation of placental interleukin 1 with an antiserum to homogeneous 22K factor, a species of interleukin 1 beta, indicating that the stimulation of plasminogen activator activity is due to interleukin 1 and not contaminating factors. Chondrocytes produce three species of plasminogen activator, with apparent Mr approximately 50,000, 65,000 and 100,000 as determined after sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis with gels containing casein and plasminogen. Both placental interleukin 1 and 22K factor enhance the production of the species of Mr approximately 65,000 and 100,000. Comparison of the mobility of the plasminogen activator species on SDS-polyacrylamide gel electrophoresis with human urokinase (u-PA) and human melanoma tissue-type plasminogen activator (t-PA) and studies with antibodies to these enzymes indicate that the Mr approximately 50,000 species is a u-PA and the Mr approximately 65,000 a t-PA. The Mr approximately 100,000 species is possibly an enzyme-inhibitor complex. Interleukin 1 therefore appears to enhance the production of t-PA and a putative enzyme-inhibitor complex. Abolition of plasminogen activator activity in the fibrin plate assay with antibodies to t-PA and u-PA also confirms enhanced t-PA production on interleukin 1 stimulation, though there is also evidence for increased cell-associated production of u-PA.  相似文献   

2.
Phorbol myristate acetate (PMA) added to human synovial fibroblast cultures caused a dose-dependent increase in the production of plasminogen activator inhibitor-type 1 (PAI-1). In addition, PMA inhibited endogenous and interleukin-1 (IL-1) induced plasminogen activator (PA) activity, while increasing mRNA PAI-1 levels. Other protein kinase C (PKC) activators, mezerein and teleocidin B4, caused similar effects. The simultaneous addition of the PKC antagonists, H-7 or staurosporine, prevented the inhibition of PA activity by PMA. This study shows that activation of PKC inhibits PA and stimulates PAI production in human synovial fibroblasts. These results suggest that activation of PKC may play an important role in regulating increased PA production associated with joint destruction in rheumatoid arthritis (RA).  相似文献   

3.
Primary cultures of immature rat Sertoli cells, maintained in serum-free medium, secrete two types of plasminogen activator (PA). When cultured under basal conditions, the preparations predominantly produce PA having a relative molecular weight (Mr) of 45,000 to 48,000. This PA activity is inactivated by antiserum against urokinase-type PA. When Sertoli cells are stimulated by follicle-stimulating hormone (FSH) or by dibutyryl cyclic adenosine 3',5'-monophosphate (dbcAMP), PA secretion is increased. The PA produced under these conditions has an Mr of 70,000, and is inactivated by antiserum against tissue-type PA but not by antiserum against urokinase-type PA. We conclude that, under basal conditions, Sertoli cells primarily secrete PA having the characteristics of urokinase-like PA (mu PA), and that Sertoli cells stimulated by FSH or by dbcAMP predominantly produce PA having the properties of tissue-type PA (tPA). Segments of adult rat seminiferous tubules, at defined stages of the cycle of the seminiferous epithelium, also produce and secrete two types of PA into the medium when maintained in organ culture. Segments at all stages examined release primarily mu PA in preparations cultured under basal conditions. In contrast, segments cultured in the presence of FSH synthesize larger amounts of PA, predominantly of the tPA type. An additional protease, which is independent of plasminogen, is secreted by tubule segments stimulated by FSH. The activity of this novel protease is not detectable in cultures maintained under basal conditions. We discuss the data in relation to the possible role of proteases in the restructuring of the seminiferous tubule during spermatogenesis.  相似文献   

4.
Cytokine regulation of synovial cell function has been considered to be involved in the pathogenesis of rheumatoid arthritis. Synoviocyte urokinase-type plasminogen activator (u-PA) expression may be relevant to the tissue remodelling, as well as to the cell migration and transformation occurring in rheumatoid joints. We report here that purified recombinant human oncostatin M (greater than or equal to approximately 0.2 U/ml = 1 pM) stimulated within six hr the u-PA activity of non-rheumatoid synovial fibroblast-like cells and raised their u-PA mRNA levels. Oncostatin M could augment PGE2 production and DNA synthesis in these cells; however, the increase in PGE2 was small compared with that caused by IL-1. Since oncostatin M is produced by immune cells, it may have a role in immune and inflammatory reactions by interacting with fibroblast populations, such as synoviocytes, in the manner described.  相似文献   

5.
Conditioned medium from concanavalin A-stimulated human peripheral blood mononuclear cells (c-MCCM) stimulates the plasminogen activator (PA) production of nonrheumatoid human synovial fibroblasts obtained from explant cultures. The effect of this synovial fibroblast-stimulating activity is observed within 2 to 4 hr and requires RNA and protein synthesis. Reversible morphological changes in the synovial cells can be observed as a result of c-MCCM action. These enzymatic and morphologic changes are similar to some of the effects of transforming viruses and tumor promoters on target cells. The possible significance of these data for an understanding of the cellular interactions involved in the formation and function of the rheumatoid "pannus" is discussed.  相似文献   

6.
Tumor-promoting phorbol esters have been reported to greatly increase plasminogen activator (PA) activity produced in numerous cell types. Many of these studies have employed a widely used fibrinolysis assay for PA activity that involves large-scale dilution of cell lysates or conditioned medium (CM) into buffer containing plasminogen and the plasmin substrate 125I-fibrin. This assay indicates that phorbol ester and the mitogens epidermal growth factor (EGF) and thrombin all stimulate secretion of PA activity in our human foreskin fibroblast cultures. However, these effects are not observed in a modified fibrinolysis assay employing undiluted conditioned culture medium unless the medium is first treated at pH 3, which inactivates the secreted protease inhibitor, protease nexin (PN). Moreover, a direct assay for plasminogen activator activity based on cleavage of 125I- plasminogen indicates that conditioned culture medium contains little if any active plasminogen activator either before or after treatment of the cultures with phorbol ester or EGF. Phorbol ester and mitogens do stimulate secretion of (a) an inactive PA that can be activated by plasmin and (b) PN, which inhibits both the activated form of the PA and plasmin. Secretions of the inactive PA and PN are further correlated in that release of both is stimulated most by phorbol ester, somewhat less by EGF, and least by thrombin. Significantly, these effects are not accompanied by increases in total protein secretion. We propose that fibroblasts secrete PA in an inactive form in the presence of PN to confine PA activity to an as yet undefined location or event.  相似文献   

7.
Suppression of plasminogen activator (PA) activity has been invoked as being part of the general anti-inflammatory action of glucocorticoids. Low concentrations of the synthetic glucocorticoid, dexamethasone (Dex), reduce urokinase-type PA mRNA levels in two cell types, namely a human fibrosarcoma line, HT1080, and synovial fibroblast-like cells isolated from human joints. Conversely, metallothionein IIa (MTIIa) mRNA levels in these cells are raised by Dex. These findings, by suggesting that it is possible to suppress urokinase-type PA activity at the level of gene expression, may have therapeutic implications for diseases such as rheumatoid arthritis where proteases may be contributing to the extensive tissue damage and inflammation.  相似文献   

8.
We have previously described a factor(s) produced by 8387 fibrosarcoma cells, which can affect plasminogen activator (PA) activity of cultured cells. Since then, transforming growth factor-beta (TGF beta) has been established as a major growth factor/growth inhibitor that regulates both the expression and activity of PAs and their endothelial-type inhibitor (PAI-1). The present study was undertaken to characterize the 8387 fibrosarcoma cell-derived factor(s) and to investigate its relationships to TGF beta by analysis of modulation of PA activity and cell growth. The fibrosarcoma cell-derived proteins were partially purified from serum-free conditioned culture medium using Bio-Gel P-10 chromatography. Two separate fractions with apparent molecular weights of 16,000 and 12,000 contained activities that both decreased the secretion of PA activity by human lung fibroblasts and inhibited the soft agar growth of A549 lung adenocarcinoma cells. Both factors affected similarly the production of urokinase-type PA and PAI-1 in various cell lines and enhanced anchorage-independent growth of murine AKR-2B fibroblasts. The effects of these factors thus resembled those of TGF beta. The immunological relationships between the Mr 16,000 and Mr 12,000 factors and TGF beta were therefore studied using neutralizing anti-TGF beta antibodies. The TGF beta antibodies efficiently inhibited the effects of the Mr 16,000 factor but not those of the Mr 12,000 factor in cell culture assays. The results suggest that 8387 fibrosarcoma cells produce two major growth inhibitors, one of which is closely related to TGF beta.  相似文献   

9.
《The Journal of cell biology》1986,103(6):2403-2410
Cultured human embryonic lung fibroblasts were used as a model to study the effects of transforming growth factor-beta (TGF beta) on the plasminogen activator (PA) activity released by nontumorigenic cells into the culture medium. The cells were exposed to TGF beta under serum- free conditions, and the changes in PA activity and protein metabolism were analyzed by caseinolysis-in-agar assays, zymography, and polypeptide analysis. Treatment of the cells with TGF beta caused a significant decrease in the PA activity of the culture medium as analyzed by the caseinolysis-in-agar assays. The quantitatively most prominent effect of TGF beta on confluent cultures of cells was the induction of an Mr 47,000 protein, as detected by metabolic labeling. The Mr 47,000 protein was a PA inhibitor as judged by reverse zymography. It was antigenically related to a PA inhibitor secreted by HT-1080 tumor cells as demonstrated with monoclonal antibodies. The induced Mr 47,000 inhibitor was deposited into the growth substratum of the cells, as detected by metabolic labeling, immunoblotting analysis, and reverse zymography assays of extracellular matrix preparations. TGF beta also decreased the amounts of urokinase-type and tissue-type PAs accumulated in the conditioned medium, as detected by zymography. Epidermal growth factor antagonized the inhibitory effects of TGF beta by enhancing the amounts of the PAs. These results indicate that growth factors modulate the proteolytic balance of cultured cells by altering the amounts of PAs and their inhibitors.  相似文献   

10.
In order to define mechanisms regulating the synthesis of procollagenase in human rheumatoid synovial fibroblasts, the proteins synthesized by cultured cells were labeled with [35S]methionine. Labeled medium proteins were analyzed by SDS-PAGE directly and after immunocomplexing with a specific antibody to human fibroblast collagenase. Labeling of both the predominant form of the enzyme (Mr approximately 55 000) as well as a minor species (Mr approximately 61 000) was increased following incubation with the monokine, mononuclear cell factor/interleukin 1. The approximately 61 kDa form of the procollagenase appears to be a glycosylated form of the approximately 55 kDa precursor based on binding to Con A-Sepharose and decrease in the approximately 61 kDa form after culture in the presence of tunicamycin. Thus, mononuclear cell factor, homologous with interleukin 1, partially purified from monocyte conditioned medium increased incorporation of [35S]methionine into several medium proteins, including those complexed by the anticollagenase antibody. In the presence of mononuclear cell factor/interleukin 1, labeling of the procollagenase was increased 12-14-fold over control cultures incubated with medium alone. Therefore, one of the mechanisms involved in increase of collagenase activity in the medium of cultured synovial fibroblasts in the presence of mononuclear cell factor/interleukin 1 is a stimulation of enzyme protein synthesis.  相似文献   

11.
An inhibitor of plasminogen activator (PA) secreted by a tumorigenic, but non-metastatic, rat mammary adenocarcinoma cell line has been purified to apparent homogeneity and characterized. It strongly inhibited human urokinase, but was 100 times less potent in inhibiting bovine trypsin and had no effect on plasmin or thrombin. A secreted, urokinase-type PA (Mr 48 000) and a cell-associated PA from a metastatic rat adenocarcinoma cell line were also strongly inhibited. In contrast, a tissue-type PA (Mr 66 000), secreted by human melanoma cells, was only slightly inhibited. Purified inhibitor showed a band of Mr 66 000 in sodium dodecyl sulphate/polyacrylamide gel electrophoresis and an isoelectric point of 4.5 after chromatofocusing. The inhibition of human urokinase was non-competitive.  相似文献   

12.
U Zacharias  H Will 《FEBS letters》1991,289(2):155-158
Porcine urine, unlike human urine, does not contain detectable amounts of urokinase-type plasminogen activator (u-PA). The plasminogen activator present in porcine urine is of tissue-type (t-PA) as identified by the following criteria. (1) Porcine urine PA exhibits an Mr of 65,000 similar to the Mr of human t-PA (64-70,000) but distinct from the Mr of human u-PA (55,000). (2) Antibodies against human t-PA bind and inhibit crude and purified porcine urine PA, while human u-PA-specific antibodies do not react with porcine urine PA. (3) Plasminogen activation by porcine urine PA is markedly stimulated in the presence of fibrinogen fragments. (4) Porcine urine PA activity is not affected by concentration of amiloride substantially suppressing human u-PA activity.  相似文献   

13.
The plasminogen activator activity of human synovial fibroblasts is raised by a monocyte-derived polypeptide, synovial activator and also by all-trans retinoic acid. The elevation of the synovial cell plasminogen activator activity by the two stimuli is potentiated both by agents which can raise cellular cyclic AMP levels, namely prostaglandin E2, cholera toxin and 3-isobutyl-1-methylxanthine, and also by exogenous 8-bromocyclic AMP. These findings suggest that there might be a substrate, which is phosphorylated by a cyclic AMP-dependent protein kinase and which is important in the modulation of the synovial cell plasminogen activator activity by the two stimuli. Prostanoids can be important in the stimulation of the synovial fibroblast plasminogen activator activity by mononuclear cell supernatants, since indomethacin can inhibit the increase in proteinase activity.  相似文献   

14.
Primary and early subcultures (1st- to 3rd passage) of human umbilical vein endothelial cells produce tissue-type plasminogen activator (t-PA) antigen, consisting only of a major Mr 110,000 t-PA form. Later subcultures (greater than 4th passage) produce increasing amounts of t-PA antigen, consisting of a major Mr 110,000 and a minor Mr 68,000 form as well as increasing amounts of urokinase-type plasminogen activator (u-PA) antigen, consisting of a minor Mr 95,000 and major Mr 54,000 form. All of the major plasminogen activator forms were purified to homogeneity from 72 h serum-free conditioned media (3 liters, 1-1.8 x 10(9) cells) by a combination of immunoaffinity and gel filtration chromatography. Typically, 4th to 6th passage cultures produced/secreted t-PA-type proteins consisting of an inactive Mr 110,000 (220 IU/mg) and active Mr 68,000 (76,500 IU/mg) form representing about 39 and 8%, respectively, of the total starting sodium dodecyl sulfate stable t-PA activity, and u-PA-type proteins consisting of an inactive Mr 95,000 (700 IU/mg) and active Mr 54,000 (81,000 IU/mg) form representing about 9 and 38%, respectively, of the total starting sodium dodecyl sulfate stable u-PA activity. The isolated Mr 68,000 t-PA and Mr 54,000 u-PA proteins, exist only as two-chain forms in the absence of aprotinin and as mixtures of single- and two-chain proteins in the presence of aprotinin. Treatment with nucleophilic agents completely dissociated the Mr 110,000 t-PA and Mr 95,000 u-PA proteins into their respective Mr 68,000 t-PA and Mr 54,000 u-PA activity forms and a common Mr 46,000 protein, confirming the enzyme-inhibitor complex nature of these inactive plasminogen activator forms.  相似文献   

15.
Adult human skin fibroblasts were used as a model to study the effects of transforming growth factor beta (TGF beta) on the secreted plasminogen activator (PA) activity of cultured cells. TGF beta, at nanogram concentrations, enhanced the secretion of pro-PA from two fibroblast strains in a time- and dose-dependent manner. The induced enzymatic activity was inhibited by anti-urokinase antibodies and it co-migrated with purified urokinase in polyacrylamide gels. The secretion of PA activity was abolished when cycloheximide (0.1 microgram/ml) was added to the cultures. The activity was thus dependent on protein synthesis rather than just on direct activation of a plasminogen proactivator. TGF beta had only a slight mitogenic effect on the test cells. Epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and insulin were ineffective alone in inducing PA. Insulin, on the contrary, had an inhibitory effect on the TGF beta-induced PA activity. In addition to its effects on the secretion of PA, TGF beta enhanced the production of a proteinase inhibitor by these cells. The results suggest a role for TGF beta in the regulation of PA activity and pericellular proteolysis in fibroblastic cells.  相似文献   

16.
This study evaluates the contribution of two types of plasminogen activators (PAs; tissue-type PA (tPA) versus urokinase-type PA (uPA) toward the invasiveness of human melanoma cells in a novel in vitro assay. We identified two human melanoma cell lines, MelJuso and MeWo, expressing uPA or tPA as shown at mRNA, protein, and enzyme activity level. MelJuso cells produced uPA as well as plasminogen activator inhibitor-1 (PAI-1). The latter was, however, not sufficient to neutralize the cell-associated or secreted uPA activity. MeWo cells secreted tPA, but the enzyme was not found to be cell-associated. PAI-1 production by these cells was not detectable. Plasminogen activation and fibrinolytic capacity of both cell lines were reduced by anticatalytic monoclonal antibodies specific for the respective type of PA or by aprotinin. In a novel in vitro invasion assay, antibodies to PA as well as aprotinin decreased the invasiveness of both cell lines into a fibrin gel, Matrigel, or intact extracellular matrix. Our results confirm the importance of uPA-catalyzed plasminogen activation in tumor cell invasiveness. Furthermore, we provide evidence that tPA, beyond its key role in thrombolysis, can also be involved in in vitro invasion of human melanoma cells.  相似文献   

17.
Mononuclear phagocytes regulate the generation of plasmin by secreting urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-2 (PAI-2). We investigated the production of plasminogen activator (PA) and PA inhibitor by the human monocytic leukemia cell line, THP-1. Similar to U937 monoblast-like cells and peripheral blood monocytes (PBM), THP-1 cells produce a PA that is specifically neutralized by anti-uPA antibody and comigrates with human high molecular mass uPA (54 kDa) on casein-plasminogen zymogaphy. PA activity could be dissociated from intact THP-1 cells by brief treatment with a weak acid-glycine buffer, indicating that the uPA is secreted and bound to receptors on the plasma membrane. Regulation of uPA proceeds normally in THP-1 cells, with cell-associated PA activity increasing from 77 +/- 20 to 163 +/- 26 and 325 +/- 30 mPU/10(6) cells in response to PMA and LPS, respectively; parallel increases in steady state levels of uPA mRNA were observed. In contrast to normal expression of uPA activity, functional PAI-2 could not be demonstrated in either the conditioned media or cell lysates of THP-1 under basal or stimulated conditions. Both U937 and PBM secrete low levels of PA inhibitor activity that increase substantially in response to stimulation with PMA and LPS. Immunoreactive PAI-2, measured by ELISA, was undetectable in THP-1 lysates or conditioned medium, but was consistently present in U937 and PBM, paralleling the presence of PA inhibitor activity. THP-1 cells express low levels of an abnormally sized mRNA for PAI-2 and demonstrate a regulatory defect whereby steady state levels of PAI-2 mRNA are markedly reduced upon stimulation with PMA or LPS. By contrast, U937 and PBM respond to identical stimulation with increases in PAI-2 mRNA. We conclude that THP-1 cells express a structurally abnormal species of PAI-2 mRNA, with complete loss of inhibitory activity as well as altered function of PMA- and LPS-responsive regulatory elements.  相似文献   

18.
Cell extracts and conditioned media (CM) from cultured bovine aortic endothelial cells (BAEs) were fractionated by PAGE in the presence SDS, and plasminogen activator (PA) activity was localized by fibrin autography. Multiple molecular weight forms of PA were detected in both preparations. Cell-associated PAs had Mr of 48,000, 74,000, and 100,000 while secreted PAs showed Mr of 52,000, 74,000, and 100,000. A broad zone of activity (Mr 80,000-100,000) also was present in both cellular fractions. In addition, PAs of Mr 41,000 and 30,000 appeared upon prolonged incubation or repeated freezing and thawing of the samples, and probably represent degradation products of higher molecular weight forms. This complex lysis pattern was not observed when CM was subjected to isoelectric focusing. Instead, only two classes of activator were resolved, one at pH 8.5, the other at 7.6. Analysis of focused samples by SDS PAGE revealed that the activity at pH 8.5 resulted exclusively from the Mr 52,000 form; all other forms were recovered at pH 7.6. The activity of the Mr 52,000 form was neutralized by anti-urokinase IgG but was not affected by antitissue activator IgG indicating that it is a urokinaselike PA. The activities of the Mr 74,000-100,000 forms were not affected by anti-urokinase. They were blocked by antitissue activator suggesting that all the forms in this group were tissue-type PAs. The multiple forms of PA were differentially sensitive to inactivation by diisopropylfluorophosphate (DFP). Treatment of CM with 10 mM DFP for 2 h at 37 degrees C only partially inhibited the 52,000-dalton form. However, it completely inactivated the 74,000-dalton partially inhibited the 52,000-dalton form. However, it completely inactivated the 74,000-dalton PA. The activity of the Mr 100,000 form was not affected by this treatment, or by treatment with 40 mM DFP. Thus, cultured BAEs produce multiple, immunologically distinct forms of PA which differ in size, charge, and sensitivity to DFP. These forms include both urokinaselike and tissue-activator-like PAs. The possibility that one of these forms is a zymogen is discussed.  相似文献   

19.
Expression of tumor cell properties in synovial cells in culture   总被引:1,自引:0,他引:1  
The tumorigenic properties of human rheumatoid arthritis synovial cells in culture were investigated. The synovial cells developed good colonies and secreted plasminogen activator (PA) and collagenase in the cell cultures, as do Hela cells. Since PA and progesterone receptor (PgR) are considered to be end products of estradiol action in breast cancer cells, the estrogen receptor (ER) and PgR content in these cells was also assayed. Large amounts of ER and PgR were detected in the synovial cells in culture, even though these cells are not targets for sex steroids. Study of the cytomorphologic changes in the synovial cells in culture revealed many characteristics generally observed in neoplastic cells. Whether any or all of these observations have any implication in prognosis or therapy in this disease remains to be studied.  相似文献   

20.
Incubation of HTC rat hepatoma cells with the synthetic glucocorticoid dexamethasone rapidly inhibits plasminogen activator (PA) activity secondary to the induction of a specific acid-stable inhibitor of plasminogen activation (Cwikel, B. J., Barouski-Miller, P.A., Coleman, P.L., and Gelehrter, T.D. (1984) J. Biol. Chem. 259, 6847-6851). We have further characterized this inhibitor with respect to its interaction with both urokinase and tissue plasminogen activator, and its protease specificity. The HTC PA inhibitor rapidly inhibits urokinase and tissue plasminogen activator with an apparent second-order rate constant of 3-5 x 10(7) M-1 X s-1. The inhibitor forms stable covalent complexes with both urokinase and tissue plasminogen activator, with which plasmin, trypsin, and factor Xa apparently do not compete. Complex formation is saturable and requires the active site of the PA. The mass of the inhibitor-PA complex is 50,000 daltons greater than that of PA alone, consistent with an Mr for the PA inhibitor of 50,000 as demonstrated directly by reverse fibrin autography. The HTC PA inhibitor does not inhibit thrombin and differs in its kinetic and biochemical properties from protease nexin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号