首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the bay region (1R,2S,3R,4S)-N6-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyadenosyl adduct at X(7) of 5'-d(CGGACAXGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, was determined by NMR. This was the bay region benz[a]anthracene RSRS (61,3) adduct. The BA moiety intercalated above the 5'-face of the modified base pair. NOE connectivities between imino protons were disrupted at T16 and T17. Large chemical shifts at the lesion site were consistent with ring current shielding arising from the BA moiety. A large chemical shift dispersion was observed for the BA aromatic protons. An increased rise of 8.17 A was observed between base pairs A6 x T17 and X7 x T(16). The PAH moiety stacked with the purine ring of A6, the 5'-neighbor nucleotide. This resulted in buckling of the 5'-neighbor A6 x T17 base pair, evidenced by exchange broadening for the T17 imino resonance. It also interrupted sequential NOE connectivities between nucleotides C5 and A6. The A6 deoxyribose ring showed an increased percentage of the C3'-endo conformation. This differed from the bay region BA RSRS (61,2) adduct, in which the lesion was located at position X6 [Li, Z., Mao, H., Kim, H.-Y., Tamura, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 2969-2981], but was similar to the benzo[a]pyrene BP SRSR (61,3) adduct [Zegar I. S., Chary, P., Jabil, R. J., Tamura, P. J., Johansen, T. N., Lloyd, R. S., Harris, C. M., Harris, T. M., and Stone, M. P. (1998) Biochemistry 37, 16516-16528]. The altered sugar pseudorotation at A6 appears to be common to both bay region BA RSRS (61,3) and BP SRSR (61,3) adducts. It could not be discerned if the C3'-endo conformation at A6 in the BA RSRS (61,3) adduct altered base pairing geometry at X7 x T16, as compared to the C2'-endo conformation. The structural studies suggest that the mutational spectrum of this adduct may be more complex than that of the BA RSRS (61,2) adduct.  相似文献   

2.
Li Z  Kim HY  Tamura PJ  Harris CM  Harris TM  Stone MP 《Biochemistry》1999,38(49):16045-16057
The (1S,2R,3S,4R)-N(6)-[1-(1,2,3,4-tetrahydro-2,3, 4-trihydroxybenz[a]anthracenyl)]-2'-deoxyadenosyl adduct at X6 of 5'-d(CGGACXAGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, results from trans opening of (1R,2S,3S,4R)-1,2-epoxy-1,2,3, 4-tetrahydrobenz[a]anthracenyl-3,4-diol by the exocyclic N6 of adenine. Two conformations of this adduct exist, in slow exchange on the NMR time scale. A structure for the major conformation, which represents approximately 80% of the population, is presented. In this conformation, an anti glycosidic torsion angle is observed for all nucleotides, including S,R,S,RA6. The refined structure is a right-handed duplex, with the benz[a]anthracene moiety intercalated on the 3'-face of the modified base pair, from the major groove. It is located between S,R,S,RA6.T17 and A7.T16. Intercalation is on the opposite face of the modified S,R,S,RA6.T17 base pair as compared to the (1R,2S,3R,4S)-N6-[1-(1,2,3,4-tetrahydro-2, 3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyadenosyl adduct, which intercalated 5' to the modified R,S,R,SA6.T17 base pair [Li, Z. , Mao, H., Kim, H.-Y., Tamura, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 2969-2981]. The spectroscopic data do not allow refinement of the minor conformation, but suggest that the adenyl moiety in the modified nucleoti111S,R, S,RA6 adopts a syn glycosidic torsion angle. Thus, the minor conformation may create greater distortion of the DNA duplex. The results are discussed in the context of site-specific mutagenesis studies which reveal that the S,R,S,RA6 lesion is less mutagenic than the R,S,R,SA6 lesion.  相似文献   

3.
Z Li  H Y Kim  P J Tamura  C M Harris  T M Harris  M P Stone 《Biochemistry》1999,38(45):14820-14832
The structure of the non-bay region (8S,9R,10S,11R)-N(6)-[11-(8,9,10, 11-tetrahydro-8,9,10-trihydroxybenz[a]anthracenyl)]-2'-de oxyadenosyl adduct at X(6) of 5'-d(CGGACXAGAAG)-3'.5'-d(CTTCTTGTCCG)-3', incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, was determined. Molecular dynamics simulations were restrained by 475 NOEs from (1)H NMR. The benz[a]anthracene moiety intercalated above the 5'-face of the modified base pair and from the major groove. The duplex suffered distortion at and immediately adjacent to the adduct site. This was evidenced by the disruption of the Watson-Crick base pairing for X(6) x T(17) and A(7) x T(16) and the increased rise of 7.7 A between base pairs C(5) x G(18) and X(6) x T(17). Increased disorder was observed as excess line width of proton resonances near the lesion site. Comparison with the bay region benzo[a]pyrene [Zegar, I. S., Kim, S. J., Johansen, T. N., Horton, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1996) Biochemistry 35, 6212-6224] and bay region benz[a]anthracene [Li, Z., Mao, H., Kim, H.-Y., Tamura, P. J., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 2969-2981] adducts with the corresponding stereochemistry and at the same site shows that this non-bay region benz[a]anthracene lesion assumes different base pair geometry, in addition to exhibiting greater disorder. These differences are attributed to the loss of the bay region ring. The results suggest the bay region ring contributes to base stacking interactions at the lesion site. These structural differences between the non-bay and bay region lesions are correlated with site-specific mutagenesis data. The bay region benzo[a]pyrene and bay region benz[a]anthracene adducts were poorly replicated in vivo, and induced A --> G mutations. In contrast, the non-bay region benz[a]anthracene adduct was easily bypassed in vivo and was nonmutagenic.  相似文献   

4.
The conformation of the trans-anti-(1S,2R,3S,4R)-N(2)-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyguanosyl adduct in d(G(1)G(2)C(3)A(4)G(5)X(6)T(7)G(8)G(9)T(10)G(11)).d(C(12)A(13)C(14)C(15)A(16)C(17)C(18)T(19)G(20)C(21)C(22)), bearing codon 12 of the human N-ras protooncogene (underlined), was determined. This adduct had S stereochemistry at the benzylic carbon. Its occurrence in DNA is a consequence of trans opening by the deoxyguanosine amino group of (1R,2S,3S,4R)-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthracenyl-3,4-diol. The resonance frequencies, relative to the unmodified DNA, of the X(6) H1' and H6 protons were shifted downfield, whereas those of the C(18) and T(19) H1', H2', H2' ', and H3' deoxyribose protons were shifted upfield. The imino and amino resonances exhibited the expected sequential connectivities, suggesting no interruption of Watson-Crick pairing. A total of 426 interproton distances, including nine uniquely assigned BA-DNA distances, were used in the restrained molecular dynamics calculations. The refined structure showed that the benz[a]anthracene moiety bound in the minor groove, in the 5'-direction from the modified site. This was similar to the (+)-trans-anti-benzo[a]pyrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon [Cosman, M., De Los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., Broyde, S., and Patel, D. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1914-1918]. It differed from the (-)-trans-anti-benzo[c]phenanthrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon, which intercalated in the 5'-direction [Lin, C. H., Huang, X., Kolbanovskii, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E., and Patel, D. J. (2001) J. Mol. Biol. 306, 1059-1080]. The results provided insight into how PAH molecular topology modulates adduct structure in duplex DNA.  相似文献   

5.
2D NMR has been used to examine the structure and dynamics of a 12-mer DNA duplex, d(T(1)A(2)G(3)T(4)C(5)A(6)A(7)G(8)G(9)G(10)C(11)A(12))-d(T(13)G(14)C( 15)C(16)C(17)T(18)T(19)G(20)A(21)C(22)T(23)A(24)), containing a 10R adduct at dA(7) that corresponds to trans addition of the N(6)-amino group of dA(7) to (-)-(7S,8R,9R,10S)-7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-(S,R,R,S)-BP DE-2]. This DNA duplex contains the base sequence for the major dA mutational hot spot in the HPRT gene when Chinese hamster V79 cells are given low doses of the highly carcinogenic (+)-(R,S,S,R)-BP DE-2 enantiomer. NOE data indicate that the hydrocarbon is intercalated on the 5'-side of the modified base as has been seen previously for other oligonucleotides containing BP DE-2 (10R)-dA adducts. 2D chemical exchange-only experiments indicate dynamic behavior near the intercalation site especially at the 10R adducted dA, such that this base interconverts between the normal anti conformation and a less populated syn conformation. Ab initio molecular orbital chemical shift calculations of nucleotide and dinucleotide fragments in the syn and anti conformations support these conclusions. Although this DNA duplex containing a 10R dA adduct exhibits conformational flexibility as described, it is nevertheless more conformationally stable than the corresponding 10S adducted duplex corresponding to trans opening of the carcinogenic isomer (+)-(R,S,S, R)-BP DE-2, which was too dynamic to permit NMR structure determination. UV and imino proton NMR spectral observations indicated pronounced differences between these two diastereomeric 12-mer duplexes, consistent with conformational disorder at the adduct site and/or an equilibrium with a nonintercalated orientation of the hydrocarbon in the duplex containing the 10S adduct. The existence of conformational flexibility around adducts may be related to the occurrence of multiple mutagenic outcomes resulting from a single DE adduct.  相似文献   

6.
The solution structure of an 11-mer DNA duplex, d(CGGTCA*CGAGG) x d(CCTCGTGACCG), containing a 10R adduct at dA* that corresponds to the cis addition of the N(6)-amino group of dA(6) to (+)-(9S,10R)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene was studied by 2D NMR methods. The NOESY cross-peak patterns indicate that the hydrocarbon is intercalated on the 5'-side of the modified base. This observation is the same as that observed for other oligonucleotides containing (10R)-dA adducts but opposite to that observed for the corresponding (10S)-dA adducts which are intercalated on the 3'-side of the modified base. The hydrocarbon is intercalated from the major groove without significant disruption of either the anti glycosidic torsion angle of the modified residue or the base pairing of the modified residue with the complementary residue on the opposite strand. The ensemble of 10 structures determined exhibits relatively small variations (6-15 degrees) in the characteristic hydrocarbon-base dihedral angles (alpha' and beta') as well as the glycosidic torsion angle chi. These angles are similar to those in a previously determined cis-opened benzo[a]pyrene diol epoxide-(10R)-dA adduct structure. Comparison of the present structure with the cis-opened diol epoxide adduct suggests that the absence of the 7- and 8-hydroxyl groups results in more efficient stacking of the aromatic moiety with the flanking base pairs and deeper insertion of the hydrocarbon into the helix. Relative to normal B-DNA, the duplex containing the present tetrahydroepoxide adduct is unwound at the lesion site, whereas the diol epoxide adduct structure is more tightly wound than normal B-DNA. Buckling of the adducted base pair as well as the C(5)-G(18) base pair that lies immediately above the hydrocarbon is much less severe in the present adducted structure than its cis-opened diol epoxide counterpart.  相似文献   

7.
The solution structure of the 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2R,3R-butanediol cross-link arising from N(6)-dA alkylation of nearest-neighbor adenines by butadiene diepoxide (BDO(2)) was determined in the oligodeoxynucleotide 5'-d(CGGACXYGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained codon 61 (underlined) of the human N-ras protooncogene. The cross-link was accommodated in the major groove of duplex DNA. At the 5'-side of the cross-link there was a break in Watson-Crick base pairing at base pair X(6).T(17), whereas at the 3'-side of the cross-link at base pair Y(7).T(16), base pairing was intact. Molecular dynamics calculations carried out using a simulated annealing protocol, and restrained by a combination of 338 interproton distance restraints obtained from (1)H NOESY data and 151 torsion angle restraints obtained from (1)H and (31)P COSY data, yielded ensembles of structures with good convergence. Helicoidal analysis indicated an increase in base pair opening at base pair X(6).T(17), accompanied by a shift in the phosphodiester backbone torsion angle beta P5'-O5'-C5'-C4' at nucleotide X(6). The rMD calculations predicted that the DNA helix was not significantly bent by the presence of the four-carbon cross-link. This was corroborated by gel mobility assays of multimers containing nonhydroxylated four-carbon N(6),N(6)-dA cross-links, which did not predict DNA bending. The rMD calculations suggested the presence of hydrogen bonding between the hydroxyl group located on the beta-carbon of the four-carbon cross-link and T(17) O(4), which perhaps stabilized the base pair opening at X(6).T(17) and protected the T(17) imino proton from solvent exchange. The opening of base pair X(6).T(17) altered base stacking patterns at the cross-link site and induced slight unwinding of the DNA duplex. The structural data are interpreted in terms of biochemical data suggesting that this cross-link is bypassed by a variety of DNA polymerases, yet is significantly mutagenic [Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580].  相似文献   

8.
Conformational studies of R- and S-alpha-(N6-adenyl)styrene oxide adducts mismatched with deoxycytosine at position X6 in d(CGGACXAGAAG).d(CTTCTCGTCCG), incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, are described. These were the R- and S(61,2)C adducts. The S(61,2)C adduct afforded a stable solution structure, while the R(61,2)C adduct resulted in a disordered structure. Distance restraints for the S(61, 2)C adduct were calculated from NOE data using relaxation matrix analysis. These were incorporated as effective potentials into the total energy equation. The structures were refined using restrained molecular dynamics calculations which incorporated a simulated annealing protocol. The accuracy of the emergent structures was evaluated by complete relaxation matrix methods. The structures refined to an average rms difference of 1.07 A, determined by pairwise analysis. The experimentally determined structure was compared to NOE intensity data using complete relaxation matrix back-calculations, yielding an R1x value of 11.2 x 10(-)2. The phenyl ring of the styrene in the S(61,2)C adduct was in the major groove and remained oriented in the 3'-direction as observed for the corresponding S(61,2) adduct paired with thymine [Feng, B., Zhou, L., Pasarelli, M., Harris, C. M., Harris, T. M., and Stone, M. P. (1995) Biochemistry 34, 14021-14036]. A shift of the modified adenine toward the minor groove resulted in the styrenyl ring stacking with nucleotide C5 on the 5'-side of the lesion, which shifted toward the major groove. Unlike the unmodified A.C mismatch, neither the S(61,2)C nor the R(61,2)C adduct formed protonated wobble A.C hydrogen bonds. This suggests that protonated wobble A.C pairing need not be prerequisite to low levels of alpha-SO-induced A --> G mutations. The shift of the modified adenine toward the minor groove in the S(61,2)C structure may play a more important role in the genesis of A --> G mutations. The disordered structure of the R(61,2)C adduct provides a potential explanation as to why that adduct does not induce A --> G mutations.  相似文献   

9.
Huang H  Wang H  Qi N  Lloyd RS  Rizzo CJ  Stone MP 《Biochemistry》2008,47(44):11457-11472
The trans-4-hydroxynonenal (HNE)-derived exocyclic 1, N(2)-dG adduct with (6S,8R,11S) stereochemistry forms interstrand N(2)-dG-N(2)-dG cross-links in the 5'-CpG-3' DNA sequence context, but the corresponding adduct possessing (6R,8S,11R) stereochemistry does not. Both exist primarily as diastereomeric cyclic hemiacetals when placed into duplex DNA [Huang, H., Wang, H., Qi, N., Kozekova, A., Rizzo, C. J., and Stone, M. P. (2008) J. Am. Chem. Soc. 130, 10898-10906]. To explore the structural basis for this difference, the HNE-derived diastereomeric (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals were examined with respect to conformation when incorporated into 5'-d(GCTAGC XAGTCC)-3' x 5'-d(GGACTCGCTAGC)-3', containing the 5'-CpX-3' sequence [X = (6S,8R,11S)- or (6R,8S,11R)-HNE-dG]. At neutral pH, both adducts exhibited minimal structural perturbations to the DNA duplex that were localized to the site of the adduction at X(7) x C(18) and its neighboring base pair, A(8) x T(17). Both the (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals were located within the minor groove of the duplex. However, the respective orientations of the two cyclic hemiacetals within the minor groove were dependent upon (6S) versus (6R) stereochemistry. The (6S,8R,11S) cyclic hemiacetal was oriented in the 5'-direction, while the (6R,8S,11R) cyclic hemiacetal was oriented in the 3'-direction. These cyclic hemiacetals effectively mask the reactive aldehydes necessary for initiation of interstrand cross-link formation. From the refined structures of the two cyclic hemiacetals, the conformations of the corresponding diastereomeric aldehydes were predicted, using molecular mechanics calculations. Potential energy minimizations of the duplexes containing the two diastereomeric aldehydes predicted that the (6S,8R,11S) aldehyde was oriented in the 5'-direction while the (6R,8S,11R) aldehyde was oriented in the 3'-direction. These stereochemical differences in orientation suggest a kinetic basis that explains, in part, why the (6S,8R,11S) stereoisomer forms interchain cross-links in the 5'-CpG-3' sequence whereas the (6R,8S,11R) stereoisomer does not.  相似文献   

10.
Wang F  Elmquist CE  Stover JS  Rizzo CJ  Stone MP 《Biochemistry》2007,46(29):8498-8516
The conformations of C8-dG adducts of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) positioned in the C-X1-G, G-X2-C, and C-X3-C contexts in the C-G1-G2-C-G3-C-C recognition sequence of the NarI restriction enzyme were compared, using the oligodeoxynucleotides 5'-d(CTCXGCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', 5'-d(CTCGXCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', and 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' (X is the C8-dG adduct of IQ). These were the NarIIQ1, NarIIQ2, and NarIIQ3 duplexes, respectively. In each instance, the glycosyl torsion angle chi for the IQ-modified dG was in the syn conformation. The orientations of the IQ moieties were dependent upon the conformations of torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)], which were monitored by the patterns of 1H NOEs between the IQ moieties and the DNA in the three sequence contexts. The conformational states of IQ torsion angles alpha' and beta' were predicted from the refined structures of the three adducts obtained from restrained molecular dynamics calculations, utilizing simulated annealing protocols. For the NarIIQ1 and NarIIQ2 duplexes, the alpha' torsion angles were predicted to be -176 +/- 8 degrees and -160 +/- 8 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle alpha' was predicted to be 159 +/- 7 degrees . Likewise, for the NarIIQ1 and NarIIQ2 duplexes, the beta' torsion angles were predicted to be -152 +/- 8 degrees and -164 +/- 7 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle beta' was predicted to be -23 +/- 8 degrees . Consequently, the conformations of the IQ adduct in the NarIIQ1 and NarIIQ2 duplexes were similar, with the IQ methyl protons and IQ H4 and H5 protons facing outward in the minor groove, whereas in the NarIIQ3 duplex, the IQ methyl protons and the IQ H4 and H5 protons faced into the DNA duplex, facilitating the base-displaced intercalated orientation of the IQ moiety [Wang, F., Elmquist, C. E., Stover, J. S., Rizzo, C. J., and Stone, M. P. (2006) J. Am. Chem. Soc. 128, 10085-10095]. In contrast, for the NarIIQ1 and NarIIQ2 duplexes, the IQ moiety remained in the minor groove. These sequence-dependent differences suggest that base-displaced intercalation of the IQ adduct is favored when both the 5'- and 3'-flanking nucleotides in the complementary strand are guanines. These conformational differences may correlate with sequence-dependent differences in translesion replication.  相似文献   

11.
The pyrimidopurinone adduct M1G [3-(2'-deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-a]-purin-10(3H)-one], formed in DNA upon exposure to malondialdehyde or base propenals, was incorporated into 5'-d(ATCGCMCGGCATG)-3'-5'-d(CATGCCGCGAT)-3', where M = M1G. This duplex contained a two-nucleotide bulge in the modified strand, and was named the M1G-2BD oligodeoxynucleotide. It provided a model for -2 bp strand slippage deletions associated with the (CpG)3-iterated repeat hotspot for frameshift mutations from the Salmonella typhimurium hisD3052 gene. M1G was chemically stable in the M1G-2BD duplex at neutral pH. The two-base bulge in the M1G-2BD oligodeoxynucleotide was localized and consisted of M1G and the 3'-neighbor deoxycytosine. The intrahelical orientation of M1G was established from a combination of NOE and chemical shift data. M1G was in the anti conformation about the glycosyl bond. The 3'-neighbor deoxycytosine appeared to be extruded toward the major groove. In contrast, when M1G was placed into the corresponding fully complementary (CpG)3-iterated repeat duplex at neutral pH, spontaneous and quantitative ring-opening to N(2)-(3-oxo-1-propenyl)-dG (the OPG adduct) was facilitated [Mao, H., Reddy, G. R., Marnett, L. J., and Stone, M. P. (1999) Biochemistry 38, 13491-13501]. The structure of the M1G-2BD duplex suggested that the bulged sequence lacked a cytosine amino group properly positioned to facilitate opening of M1G and supports the notion that proper positioning of deoxycytosine complementary to M1G is necessary to promote ring-opening of the exocyclic adduct in duplex DNA. The structure of the M1G-2BD duplex was similar to that of the structural analogue 1,N(2)-propanodeoxyguanosine (PdG) in the corresponding PdG-2BD duplex [Weisenseel, J. P., Moe, J. G., Reddy, G. R., Marnett, L. J., and Stone, M. P. (1995) Biochemistry 34, 50-64]. The fixed position of the bulged bases in both instances suggests that these exocyclic adducts do not facilitate transient bulge migration.  相似文献   

12.
Solution structural studies have been undertaken on the aminopyrene-C(8)-dG ([AP]dG) adduct in the d(C5-[AP]G6-C7). d(G16-A17-G18) sequence context in an 11-mer duplex with dA opposite [AP]dG, using proton-proton distance and intensity restraints derived from NMR data in combination with distance-restrained molecular mechanics and intensity-restrained relaxation matrix refinement calculations. The exchangeable and nonexchangeable protons of the aminopyrene and the nucleic acid were assigned following analysis of two-dimensional NMR data sets on the [AP]dG.dA 11-mer duplex in H2O and D2O solution. The broadening of several resonances within the d(G16-A17-G18) segment positioned opposite the [AP]dG6 lesion site resulted in weaker NOEs, involving these protons in the adduct duplex. Both proton and carbon NMR data are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue in the adduct duplex. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs and is in contact with dC5, dC7, dG16, dA17, and dG18 residues that form a hydrophobic pocket around it. The intercalated AP ring of [AP]dG6 stacks over the purine ring of dG16 and, to a lesser extent dG18, while the looped out deoxyguanosine ring of [AP]dG6 stacks over dC5 in the solution structure of the adduct duplex. The dA17 base opposite the adduct site is not looped out of the helix but rather participates in an in-plane platform with adjacent dG18 in some of the refined structures of the adduct duplex. The solution structures are quite different for the [AP]dG.dA 11-mer duplex containing the larger aminopyrene ring (reported in this study) relative to the previously published [AF]dG.dA 11-mer duplex containing the smaller aminofluorene ring (Norman et al., Biochemistry 28, 7462-7476, 1989) in the same sequence context. Both the modified syn guanine and the dA positioned opposite it are stacked into the helix with the aminofluorene chromophore displaced into the minor groove in the latter adduct duplex. By contrast, the aminopyrenyl ring participates in an intercalated base-displaced structure in the present study of the [AP]dG.dA 11-mer duplex and in a previously published study of the [AP]dG.dC 11-mer duplex (Mao et al., Biochemistry 35, 12659-12670, 1996). Such intercalated base-displaced structures without hydrogen bonding between the [AP]dG adduct and dC or mismatched dA residues positioned opposite it, if present at a replication fork, may cause polymerase stalling and formation of a slipped intermediate that could produce frameshift mutations, the most dominant mutagenic consequence of the [AP]dG lesion.  相似文献   

13.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

14.
Pradhan P  Tirumala S  Liu X  Sayer JM  Jerina DM  Yeh HJ 《Biochemistry》2001,40(20):5870-5881
Two-dimensional NMR was used to determine the solution structure of an undecanucleotide duplex, d(CGGTCACGAGG).d(CCTCGTGACCG), in which (+)-(7S,8R,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene is covalently bonded to the exocyclic N(6)() amino group of the central deoxyadenosine, dA(6), through trans addition at C10 of the epoxide (to give a 10S adduct). The present study represents the first NMR structure of a benzo[a]pyrene (10S)-dA adduct in DNA with a complementary T opposite the modified dA. Exchangeable and nonexchangeable protons of the modified duplex were assigned by the use of TOCSY (in D(2)O) and NOESY spectra (in H(2)O and D(2)O). Sequential NOEs expected for a B-type DNA conformation with typical Watson-Crick base pairing are observed along the duplex, except at the lesion site. We observed a strong intraresidue NOE cross-peak between H1' and H8 of the modified dA(6). The sugar H2' and H2' ' of dC(5) lacked NOE cross-peaks with H8 of dA(6) but showed weak interactions with H2 of dA(6) instead. In addition, the chemical shift of the H8 proton (7.51 ppm) of dA(6) appears at a higher field than that of H2 (8.48 ppm). These NOE and chemical shift data for the dA(6) base protons are typical of a syn glycosidic bond at the modified base. Restrained molecular dynamics/energy minimization calculations show that the hydrocarbon is intercalated from the major groove on the 3'-side of the modified base between base pairs A(6)-T(17) and C(7)-G(16) and confirm the syn glycosidic angle (58 degrees ) of the modified dA(6). In the syn structure, a weak A-T hydrogen bond is possible between the N3-H proton of T(17) and N7 of dA(6) (at a distance of 3.11 A), whereas N1, the usual hydrogen bonding partner for N3-H of T when dA is in the anti conformation, is 6.31 A away from this proton. The 10(S)-dA modified DNA duplex remains in a right-handed helix, which bends in the direction of the aliphatic ring of BaP at about 42 degrees from the helical axis. ROESY experiments provided evidence for interconversion between the major, syn conformer and a minor, possibly anti, conformer.  相似文献   

15.
Giri I  Stone MP 《Biopolymers》2002,65(3):190-201
The trans-8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B(1) cationic guanine N7 adduct of aflatoxin B(1) thermally stabilizes the DNA duplex, as reflected in increased T(m) values upon adduction. The magnitude of the increased T(m) value is characteristically 2-3 degrees C. The major rotamer of the neutral guanine N7 adduct trans-8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B(1) (the FAPY major adduct) exhibits a 15 degrees C increase in T(m) in 5'-d(CTAT(FAPY)GATTCA)-3'-5'-d(TGAATCATAG)-3'. Site-specific mutagenesis experiments reveal the FAPY major adduct induces G-->T mutations in Escherichia coli at a frequency six times higher than that of the cationic adduct (Smela, M. E.; Hamm, M. L.; Henderson, P. T.; Harris, C. M.; Harris, T. M.; Essigmann, J. M. Proc Natl Acad Sci USA, 99, 6655-6660). Thus, the FAPY major lesion may account substantially for the genotoxicity of AFB(1). Structural studies for cationic and FAPY adducts of aflatoxin B(1) suggest both adducts intercalate above the 5'-face of the modified deoxyguanosine and that in each instance the aflatoxin moiety spans the DNA helix. Intercalation of the aflatoxin moiety, accompanied by favorable stacking with the neighboring base pairs, is thought to account for the increased thermal stability of the aflatoxin cationic guanine N7 and the FAPY major adducts. However, the structural basis for the large increase in thermal stability of the FAPY major adduct in comparison to the cationic guanine N7 adduct of aflatoxin B(1) is not well understood. In light of the site-specific mutagenesis studies, it is of considerable interest. For both adducts, the intercalation structures are similar, although improved stacking with neighboring base pairs is observed for the FAPY major adduct. In addition, the presence of the formamido group in the aflatoxin B(1) FAPY major adduct may enhance duplex stability, perhaps via intrastrand sequence-specific hydrogen bonding interactions within the duplex.  相似文献   

16.
Luu KX  Kanugula S  Pegg AE  Pauly GT  Moschel RC 《Biochemistry》2002,41(27):8689-8697
Activity of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) is an important source of tumor cell resistance to alkylating agents. AGT inhibitors may prove useful in enhancing chemotherapy. AGT is inactivated by reacting stoichiometrically with O(6)-benzylguanine (b(6)G), which is currently in clinical trials for this purpose. Short oligodeoxyribonucleotides containing a central b(6)G are more potent inactivators of AGT than b(6)G. We examined whether human AGT could react with oligodeoxyribonucleotides containing multiple b(6)G residues. The single-stranded 7-mer 5'-d[T(b(6)G)(5)G]-3' was an excellent AGT substrate with all five b(6)G adducts repaired although one adduct was repaired much more slowly. The highly b(6)G-resistant Y158H and P140K AGT mutants were also inactivated by 5'-d[T(b(6)G)(5)G]-3'. Studies with 7-mers containing a single b(6)G adduct showed that 5'-d[TGGGG(b(6)G)G]-3' was more poorly repaired by wild-type AGT than 5'-d[T(b(6)G)GGGGG]-3' and 5'-d[TGG(b(6)G)GGG]-3' and was even less repairable by mutants Y158H and P140K. This positional effect was unaffected by interchanging the terminal 5'- or 3'-nucleotides and was also observed with single-stranded 16-mer oligodeoxyribonucleotides containing O(6)-methylguanine, where a minimum of four nucleotides 3' to the lesion was required for the most efficient repair. Annealing with the reverse complementary strands to produce double-stranded substrates increased the ability of AGT to repair adducts at all positions except at positions 2 and 15. Our results suggest that AGT recognizes the polarity of single-stranded DNA, with the best substrates having an adduct adjacent to the 5'-terminal residue. These findings will aid in designing novel AGT inhibitors that incorporate O(6)-alkylguanine adducts in oligodeoxyribonucleotide contexts.  相似文献   

17.
Molecular structures of native and a pair of modified small interfering RNA-RNA duplexes containing carbocyclic [6?'-(R)-OH/7?'-(S)-methyl]- and [6?'-(S)-OH/7?'-(S)-methyl]-carba-LNA-thymine nucleotides, which are two diastereomeric analogs of the native T nucleotide, incorporated at position 13 in the antisense (AS) strand of siRNA, have been simulated using molecular mechanics/dynamics techniques. The main aim of the project has been to find a plausible structural explanation of why modification of siRNA at T(13) position by the [6?'(R)-O-(p-Toluoyl)-7?'(S)-methyl]-carba-LNA-Thymine [IC(50) of 3.32 ± 0.17 nM] is ca 24 times more active as an RNA silencing agent against the target HIV-1 TAR RNA than the [6?'(S)-O-(p-Toluoyl)-7?'(S)-methyl]-counterpart [IC(50) of 79.8 ± 17 nM] [1]. The simulations reveal that introduction of both C6?'(R)-OH and C6?'(S)-OH stereoisomers does not lead even to local perturbation of the siRNA-RNA duplex structures compared to the native, and the only significant difference between 6?'(S)- and 6?'(R)-diastereomers found is the exposure of the 6?'-OH group of the 6?'(R)-diastereoisomer toward the edge of the duplex while the 6?'-hydroxyl group of the 6?'(S)-diastereoisomer is somewhat buried in the minor groove of the duplex. This rules out a hypothesis about any possible local distortion by the nature of chemical modification of the siRNA-target the RNA duplex, which might have influenced the formation of the effective RNA silencing complex (RISC) and puts some weight on the hypothesis about the 6?'-hydroxy group being directly involved with most probably Ago protein, since it is known from exhaustive X-ray studies [2, 3] that the core residues are indeed involved with hydrogen bonding with the internucleotidyl phosphates. Further systematic investigation is in progress to map the position-dependent functional and nonfunctional interactions of the modified [6?'(R or S)-O-(p-Toluoyl)-7?'(S)-methyl]-carba-LNA-T with the Ago2 protein of the RISC.  相似文献   

18.
The solution structure of the N1-(1-hydroxy-3-buten-2(S)-yl)-2'-deoxyinosine adduct arising from the alkylation of adenine N1 by butadiene epoxide (BDO), followed by deamination to deoxyinosine, was determined, in the oligodeoxynucleotide d(CGGACXAGAAG).d(CTTCTCGTCCG). This oligodeoxynucleotide contained the BDO adduct at the second position of codon 61 of the human N-ras protooncogene, and was named the ras61 S-N1-BDO-(61,2) adduct. (1)H NMR revealed a weak C(5) H1' to X(6) H8 NOE, followed by an intense X(6) H8 to X(6) H1' NOE. Simultaneously, the X(6) H8 to X(6) H3' NOE was weak. The resonance arising from the T(17) imino proton was not observed. (1)H NOEs between the butadiene moiety and the DNA positioned the adduct in the major groove. Structural refinement based upon a total of 364 NOE-derived distance restraints yielded a structure in which the modified deoxyinosine was in the high syn conformation about the glycosyl bond, and T(17), the complementary nucleotide, was stacked into the helix, but not hydrogen bonded with the adducted inosine. The refined structure provided a plausible hypothesis as to why this N1 deoxyinosine adduct strongly coded for the incorporation of dCTP during trans lesion DNA replication, both in Escherichia coli [Rodriguez, D. A., Kowalczyk, A., Ward, J. B. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2001) Environ. Mol. Mutagen. 38, 292-296], and in mammalian cells [Kanuri, M., Nechev, L. N., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580]. Rotation of the N1 deoxyinosine adduct into the high syn conformation may facilitate incorporation of dCTP via Hoogsteen-type templating with deoxyinosine, thus generating A-to-G mutations.  相似文献   

19.
Conformations of (R)-beta-(N(6)-adenyl)styrene oxide and (S)-beta-(N(6)-adenyl)styrene oxide adducts at position X(6) in d(CGGACXAGAAG).d(CTTCTTGTCCG), incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, were refined from (1)H NMR data. These were designated as the beta-R(61,2) and beta-S(61,2) adducts. A total of 533 distance restraints and 162 dihedral restraints were used for the molecular dynamics calculations of the beta-S(61,2) adduct, while 518 distances and 163 dihedrals were used for the beta-R(61,2) adduct. The increased tether length of the beta-adducts results in two significant changes in adduct structure as compared to the corresponding alpha-styrenyl adducts [Stone, M. P., and Feng, B. (1996) Magn. Reson. Chem. 34, S105-S114]. First, it reduces the distortion introduced into the DNA duplex. For both the beta-R(61,2) and beta-S(61,2) adducts, the styrenyl moiety was positioned in the major groove of the duplex with little steric hindrance. Second, it mutes the influence of stereochemistry at the alpha-carbon such that both the beta-R(61,2) and beta-S(61,2) adducts exhibit similar conformations. The results were correlated with site-specific mutagenesis experiments that revealed the beta-R(61,2) and beta-S(61,2) adducts were not mutagenic and did not block polymerase bypass.  相似文献   

20.
The solution structures of R- and S-alpha-(N(6)-adenyl)-styrene oxide adducts mismatched with cytosine at position X(7) in d(CGGACAXGAAG) x d(CTTCCTGTCCG), incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, were determined. These were the R- and S(61,3)C adducts. The structures for these mismatched adducts differed from the sequence isomeric R- and S(61,2)C adducts [Painter, S. L., Zegar, I. S., Tamura, P. J., Bluhm, S., Harris, C. M., Harris, T. M., and Stone, M. P. (1999) Biochemistry 38, 8635-8646]. The results reveal that the structural consequences of cytosine mispairing opposite the R- and S-alpha-SO adducts differ as a function of DNA sequence. The thermodynamic stability of both the R- and S(61,3)C mismatched adducts was dependent upon pH. At neutral pH, the R- and S(61,3)C adducts exhibited significant structural perturbation and had lower T(m) values, as compared to the R- and S(61,2)C adducts. In both instances, this was attributed to reorientation about the C6-N(6) bond, such that the N(6)H proton faced away from the Watson-Crick face of the purine base and into the major groove. The conformation about the N(6)-C(alpha)-C(beta)-O torsion angle was predicted from rMD calculations to be stabilized by a N/O gauche-type interaction between the styrenyl hydroxyl moiety and adenine N(6) at the lesion site. For the R(61,3)C adduct, the styrenyl moiety remained oriented in the major groove and faced in the 3'-direction. In the properly base-paired R(61,3) adduct, it had faced in the 5' direction. For the S(61,3)C adduct, the styrene ring was inserted into the duplex, approximately perpendicular to the helical axis of the DNA. It faced in the 5'-direction. In the properly base-paired S(61,3) adduct, it had faced in the 3'-direction. The results were correlated with site-specific mutagenesis experiments in vivo. The latter revealed that the R- and S(61,3)-alpha-styrene oxide adducts were nonmutagenic. This may be a consequence of the greater structural perturbation associated with formation of the cytosine mismatch at neutral pH for the R- and S(61,3) adducts as compared to the S(61,2) adduct that exhibited low levels of A --> G mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号