首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple signalling pathways are involved in the mechanism by which insulin stimulates hepatic glycogen synthesis. In this study we used selective inhibitors of glycogen synthase kinase-3 (GSK-3) and an allosteric inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a, to determine the relative contributions of inactivation of GSK-3 and dephosphorylation of phosphorylase a as alternative pathways in the stimulation of glycogen synthesis by insulin in hepatocytes. GSK-3 inhibitors (SB-216763 and Li+) caused a greater activation of glycogen synthase than insulin (90% vs. 40%) but a smaller stimulation of glycogen synthesis (30% vs. 150%). The contribution of GSK-3 inactivation to insulin stimulation of glycogen synthesis was estimated to be less than 20%. Dephosphorylation of phosphorylase a with CP-91149 caused activation of glycogen synthase and translocation of the protein from a soluble to a particulate fraction and mimicked the stimulation of glycogen synthesis by insulin. The stimulation of glycogen synthesis by phosphorylase inactivation cannot be explained by either inhibition of glycogen degradation or activation of glycogen synthase alone and suggests an additional role for translocation of synthase. Titrations with the phosphorylase inactivator showed that stimulation of glycogen synthesis by insulin can be largely accounted for by inactivation of phosphorylase over a wide range of activities of phosphorylase a. We conclude that a signalling pathway involving dephosphorylation of phosphorylase a leading to both activation and translocation of glycogen synthase is a critical component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Selective inactivation of phosphorylase can mimic insulin stimulation of hepatic glycogen synthesis.  相似文献   

2.
Glutamine stimulated glycogen synthesis and lactate production in hepatocytes from overnight-fasted normal and diabetic rats. The effect, which was half-maximal with about 3 mM-glutamine, depended on glucose concentration and was maximal below 10 mM-glucose. beta-2-Aminobicyclo[2.2.1.]heptane-2-carboxylic acid, an analogue of leucine, stimulated glutaminase flux, but inhibited the stimulation of glycogen synthesis by glutamine. Various purine analogues and inhibitors of purine synthesis were found to inhibit glycogen synthesis from glucose, but they did not abolish the stimulatory effect of glutamine on glycogen synthesis. The correlation between the rate of glycogen synthesis and synthase activity suggested that the stimulation of glycogen synthesis by glutamine depended solely on the activation of glycogen synthase. This activation of synthase was not due to a change in total synthase, nor was it caused by a faster inactivation of glycogen phosphorylase, as was the case after glucose. It could, however, result from a stimulation of synthase phosphatase, since, after the addition of 1 nM-glucagon or 10 nM-vasopressin, glutamine did not interfere with the inactivation of synthase, but did promote its subsequent re-activation. Glutamine was also found to inhibit ketone-body production and to stimulate lipogenesis.  相似文献   

3.
Phosphorylase is regulated by a number of small-molecular-weight effectors that bind to three sites on the enzyme. Recently, a fourth site referred to as the indole-inhibitor site has been identified. Synthetic compounds bind to the site and inhibit activity. However, the effects of these compounds in the presence of other endogenous effectors are unknown. We have determined the effects of four indole derivative glycogen phosphorylase inhibitors (GPI) on recombinant human liver glycogen phosphorylase a activity. The GPIs tested were all potent inhibitors. However, the endogenous inhibitors (glucose, ADP, ATP, fructose 1-phosphate, glucose 6-phosphate, UDP-glucose) and the activator (AMP) markedly reduced the inhibitory effect of GPIs. Consistent with these in vitro findings, the IC50 for the inhibition of glycogenolysis in cells and the liver drug concentration associated with glucose-lowering activity in diabetic ob/ob mice in vivo were also significantly higher than those determined in in vitro enzyme assays. The inhibitory effect of indole-site effectors is modulated by endogenous small-molecular-weight effectors of phosphorylase a activity. However, at higher concentrations (10-30 microM), the GPI effect was dominant and resulted in inhibition of phosphorylase a activity irrespective of the presence or absence of the other modulators of the enzyme.  相似文献   

4.
Acyl ureas were discovered as a novel class of inhibitors for glycogen phosphorylase, a molecular target to control hyperglycemia in type 2 diabetics. This series is exemplified by 6-{2,6-Dichloro- 4-[3-(2-chloro-benzoyl)-ureido]-phenoxy}-hexanoic acid, which inhibits human liver glycogen phosphorylase a with an IC(50) of 2.0 microM. Here we analyze four crystal structures of acyl urea derivatives in complex with rabbit muscle glycogen phosphorylase b to elucidate the mechanism of inhibition of these inhibitors. The structures were determined and refined to 2.26 Angstroms resolution and demonstrate that the inhibitors bind at the allosteric activator site, where the physiological activator AMP binds. Acyl ureas induce conformational changes in the vicinity of the allosteric site. Our findings suggest that acyl ureas inhibit glycogen phosphorylase by direct inhibition of AMP binding and by indirect inhibition of substrate binding through stabilization of the T' state.  相似文献   

5.
1. Control of glycogen metabolism by various substrates and hormones was studied in ruminant liver using isolated hepatocytes from fed sheep. 2. In these cells glucose appeared uneffective to stimulate glycogen synthesis whereas fructose and propionate activated glycogen synthase owing to (i) a decrease in phosphorylase a activity and (ii) changes in the intracellular concentrations of glucose 6-phosphate and adenine nucleotides. 3. The activation of hepatic glycogenolysis by glucagon and alpha 1-adrenergic agents was associated with increased phosphorylase a and decreased glycogen synthase activities. 4. The simultaneous changes in these two enzyme activities suggest that in sheep liver, activation of phosphorylase a is not a prerequisite step for synthase inactivation. 5. In sheep hepatocytes, in the presence of propionate and after a lag period, insulin activated glycogen synthase without affecting phosphorylase a. 6. This latter result suggests that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase. Insulin also antagonized glucagon effect on glycogen synthesis by counteracting the rise of cAMP.  相似文献   

6.
Expression of the glycogen-targeting protein PTG promotes glycogen synthase activation and glycogen storage in various cell types. In this study, we tested the contribution of phosphorylase inactivation to the glycogenic action of PTG in hepatocytes by using a selective inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a and sequential activation of glycogen synthase. Similar to CP-91194, graded expression of PTG caused a concentration-dependent inactivation of phosphorylase and activation of glycogen synthase. The latter was partially counter-acted by the expression of muscle phosphorylase and was not additive with the activation by CP-91149, indicating that it is in part secondary to the inactivation of phosphorylase. PTG expression caused greater stimulation of glycogen synthesis and translocation of glycogen synthase than CP-91149, and the translocation of synthase could not be explained by accumulation of glycogen, supporting an additional role for glycogen synthase translocation in the glycogenic action of PTG. The effects of PTG expression on glycogen synthase and glycogen synthesis were additive with the effects of glucokinase expression, confirming the complementary roles of depletion of phosphorylase a (a negative modulator) and elevated glucose 6-phosphate (a positive modulator) in potentiating the activation of glycogen synthase. PTG expression mimicked the inactivation of phosphorylase caused by high glucose and counteracted the activation caused by glucagon. The latter suggests a possible additional role for PTG on phosphorylase kinase inactivation.  相似文献   

7.
The newly isolated peptide PHI provoked a dose-dependent stimulation of glycogenolysis and gluconeogenesis in isolated rat hepatocytes; at 1 microM-PHI, both processes were increased 1.6-fold as compared with basal values. These PHI-mediated effects were accompanied by the activation of glycogen phosphorylase and the inactivation of pyruvate kinase. PHI (1 microM) also caused a 2-fold increase in hepatocyte cyclic AMP.  相似文献   

8.
The effects of adrenalectomy on glucagon activation of liver glycogen phosphorylase and glycogenolysis were studied in isolated hepatocytes. Adrenalectomy resulted in reduced responsiveness of glycogenolysis and phosphorylase to glucagon activation. Stimulation of cAMP accumulation and cAMP-dependent protein kinase activity by glucagon was unaltered in cells from adrenalectomized rats. Adrenalectomy did not alter the proportion of type I and type II protein kinase isozymes in liver, whereas this was changed by fasting. Activation of phosphorylase kinase by glucagon was reduced in hepatocytes from adrenalectomized rats, although the half-maximal effective concentration of glucagon was unchanged. No difference in phosphorylase phosphatase activity between liver cells from control and adrenalectomized rats was detected. Glucagon-activated phosphorylase declined rapidly in hepatocytes from adrenalectomized rats, whereas the time course of cAMP increase in response to glucagon was normal. Addition of glucose (15 mM) rapidly inactivated glucagon-stimulated phosphorylase in both adrenalectomized and control rat hepatocytes. The inactivation by glucose was reversed by increasing glucagon concentration in cells from control rats, but was accelerated in cells from adrenalectomized rats. It is concluded that impaired activation of phosphorylase kinase contributes to the reduced glucagon stimulation of hepatic glycogenolysis in adrenalectomized rats. The possible role of changes in phosphorylase phosphatase is discussed.  相似文献   

9.
A number of regulatory binding sites of glycogen phosphorylase (GP), such as the catalytic, the inhibitor, and the new allosteric sites are currently under investigation as targets for inhibition of hepatic glycogenolysis under high glucose concentrations; in some cases specific inhibitors are under evaluation in human clinical trials for therapeutic intervention in type 2 diabetes. In an attempt to investigate whether the storage site can be exploited as target for modulating hepatic glucose production, alpha-, beta-, and gamma-cyclodextrins were identified as moderate mixed-type competitive inhibitors of GPb (with respect to glycogen) with K(i) values of 47.1, 14.1, and 7.4 mM, respectively. To elucidate the structural basis of inhibition, we determined the structure of GPb complexed with beta- and gamma-cyclodextrins at 1.94 A and 2.3 A resolution, respectively. The structures of the two complexes reveal that the inhibitors can be accommodated in the glycogen storage site of T-state GPb with very little change of the tertiary structure and provide a basis for understanding their potency and subsite specificity. Structural comparisons of the two complexes with GPb in complex with either maltopentaose (G5) or maltoheptaose (G7) show that beta- and gamma-cyclodextrins bind in a mode analogous to the G5 and G7 binding with only some differences imposed by their cyclic conformations. It appears that the binding energy for stabilization of enzyme complexes derives from hydrogen bonding and van der Waals contacts to protein residues. The binding of alpha-cyclodextrin and octakis (2,3,6-tri-O-methyl)-gamma-cyclodextrin was also investigated, but none of them was bound in the crystal; moreover, the latter did not inhibit the phosphorylase reaction.  相似文献   

10.
We used metabolic control analysis to determine the flux control coefficient of phosphorylase on glycogen synthesis in hepatocytes by titration with a specific phosphorylase inhibitor (CP-91149) or by expression of muscle phosphorylase using recombinant adenovirus. The muscle isoform was used because it is catalytically active in the b-state. CP-91149 inactivated phosphorylase with sequential activation of glycogen synthase. It increased glycogen synthesis by 7-fold at 5 mm glucose and by 2-fold at 20 mm glucose with a decrease in the concentration of glucose causing half-maximal rate (S(0.5)) from 26 to 19 mm. Muscle phosphorylase was expressed in hepatocytes mainly in the b-state. Low levels of phosphorylase expression inhibited glycogen synthesis by 50%, with little further inhibition at higher enzyme expression, and caused inactivation of glycogen synthase that was reversed by CP-91149. At endogenous activity, phosphorylase has a very high (greater than unity) negative control coefficient on glycogen synthesis, regardless of whether it is determined by enzyme inactivation or overexpression. This high control is attenuated by glucokinase overexpression, indicating dependence on other enzymes with high control. The high control coefficient of phosphorylase on glycogen synthesis affirms that phosphorylase is a strong candidate target for controlling hyperglycemia in type 2 diabetes in both the absorptive and postabsorptive states.  相似文献   

11.
Studies are described which demonstrate that the ability of glucagon, epinephrine, and dibutyryl-cAMP to stimulate glycogenolysis is impaired in rat hepatocytes isolated from animals starved for 24 h and then refed a sucrose-rich diet or refed standard rat chow. The impaired regulation of glycogenolysis by glucagon was observed within 24 h after refeeding and persisted for at least 3 days. The inability of glucagon to stimulate glycogen breakdown in the refed condition appeared to be due to a suppressed activation of glycogen phosphorylase and phosphorylase b kinase by the hormone. The capacity of glucagon to regulate pyruvate kinase and glycolysis was not altered by refeeding, suggesting that the defect lies beyond interaction of the hormone at its receptor. Prolonged incubation of hepatocytes from refed rats was accompanied by depletion of glycogen reserves and was accompanied by restoration of hormonal stimulation of glycogenolysis. Addition of glycogen to cell-free extracts was found to inhibit phosphorylase b kinase but not phosphorylase. The findings of this investigation are consistent with the interpretation that high levels of glycogen present of liver after refeeding may lead to a diminished activity of phosphorylase b kinase and its hormonal regulation.  相似文献   

12.
The effects of insulin on the ability of the specific intracellular cAMP-dependent protein kinase antagonist, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate, to inhibit glycogenolysis induced by the Sp diastereomer was studied in hepatocytes isolated from fed rats. Addition of the cAMP agonist, (Sp)-cAMPS, to hepatocytes resulted in a concentration-dependent increase in glycogenolytic glucose production concomitant with the cAMP-dependent activation of phosphorylase and inhibition of glycogen synthase. Activity curves were shifted to the right in the presence of the cAMP antagonist, (Rp)-cAMPS. Preincubation of the hepatocytes with a maximally effective concentration of insulin did not affect the concentration of (Sp)-cAMPS required for half-maximal activation of phosphorylase but did result in a 10-fold shift in the concentration of (Sp)-cAMPS required for half-maximal inactivation of glycogen synthase. Preincubation of hepatocytes with a combination of the cAMP antagonist, (Rp)-cAMPS, and insulin resulted in synergistic inhibition of (Sp)-cAMPS-induced phosphorylase activation, glycogen synthase inactivation, and glycogenolytic glucose production. Since neither phosphorothioate diastereomer was hydrolyzed significantly during the course of the experiments, the synergistic effects of insulin are postulated to be working through a mechanism subsequent to the phosphodiesterase activation step.  相似文献   

13.
On the mechanism of hepatic glycogenolysis induced by anoxia or cyanide   总被引:1,自引:0,他引:1  
Addition of glucagon to isolated hepatocytes increased glycogenolysis and phosphorylase a in a proportional manner. KCN caused slightly more glycogenolysis at considerably lower levels of phosphorylase a; the discrepancy was most pronounced after pretreatment of the hepatocytes with EGTA. When incubated with tagatose, the hepatocytes accumulated tagatose 1-phosphate, a presumed inhibitor of phosphorylase a. In these conditions the glucagon-induced glycogenolysis was blocked, but the glycogen loss caused by KCN or anoxia was not affected. Cyanide and anoxia may allow phosphorylase b and a to become equally active, or they may trigger a non-phosphorolytic glycogenolysis.  相似文献   

14.
The effect of modulation of the rate of glycogenolysis on the availability of 5‐phosphoribosyl‐1‐ pyrophosphate (PRPP) was investigated in rat hepatocyte cultures. Dibutyryl cyclic AMP (dbcAMP), forskolin and glucagon, activating glycogen phosphorylase through activation of protein kinase A (PKA), were found to raise PRPP availability by 44%–56%. Arg‐vasopressin and phenylephrine, activating glycogen phosphorylase through the phosphoinositide cascade, did not affect PRPP availability. dbcAMP, but not phenylephrine, increased the degradation of pre labeled glycogen by 57%. Caffeine and CP‐91149, inhibitors of glycogen phosphorylase, decreased PRPP availability by 33% and 43%, respectively. The finding that induction of glycogenolysis enhances, and inhibition of glycogenolysis decelerates PRPP generation suggests that glycogenolysis is a major contributor to PRPP generation in liver tissue in the basal (postabsorptive) state.  相似文献   

15.
The effect of modulation of the rate of glycogenolysis on the availability of 5-phosphoribosyl-1-pyrophosphate (PRPP) was investigated in rat hepatocyte cultures. Dibutyryl cyclic AMP (dbcAMP), forskolin and glucagon, activating glycogen phosphorylase through activation of protein kinase A (PKA), were found to raise PRPP availability by 44%-56%. Arg-vasopressin and phenylephrine, activating glycogen phosphorylase through the phosphoinositide cascade, did not affect PRPP availability. dbcAMP, but not phenylephrine, increased the degradation of pre labeled glycogen by 57%. Caffeine and CP-91149, inhibitors of glycogen phosphorylase, decreased PRPP availability by 33% and 43%, respectively. The finding that induction of glycogenolysis enhances, and inhibition of glycogenolysis decelerates PRPP generation suggests that glycogenolysis is a major contributor to PRPP generation in liver tissue in the basal (postabsorptive) state.  相似文献   

16.
The glucose analogue 1-deoxynojirimycin (dNOJ) and some of its N-substituted derivatives have recently been described as potent inhibitors of the hepatic glycogenolysis induced by glucagon, Ca2+ ionophores or anoxia. The inhibition increased with time, in spite of a persistently high level of phosphorylase a [Bollen, M., Vandebroeck, A. & Stalmans, W. (1988) Biochem. Pharmacol. 37, 905-909]. dNOJ equilibrates within 1 min across the plasma membrane of hepatocytes. It is not phosphorylated or oxidized in the cell. The observation that dNOJ did not affect gluconeogenesis excludes the possibility that glucose-6-phosphatase is the target for the inhibition of glucose production from glycogen. Neither were the catalytic activities of phosphoglucomutase and phosphorylase a affected by the compound. dNOJ and two N-substituted derivatives inhibited instantaneously and completely the alpha-1,6-glucosidase activity of the debranching enzyme, with I50 values in the mumolar range. In contrast, the glucanotransferase activity of the latter enzyme was not inhibited by the compounds at 0.2 mM. The effect of dNOJ was further studied in an in vitro model system of glycogenolysis. The results were compatible with a block of glycogenolysis at the time when phosphorylase has removed the available glucosyl residues from the outer chains of the glycogen particles. This mechanism appears to account for the lag in the response of glycogenolysis to dNOJ.  相似文献   

17.
Insulin regulation of hepatic glycogen synthase and phosphorylase.   总被引:7,自引:0,他引:7  
L A Witters  J Avruch 《Biochemistry》1978,17(3):406-410
The relative roles of insulin and glucose in the regulation of hepatic glycogen synthase and phosphorylase were studied in hepatocytes from fed rats. Elevation of extra-cellular glucose led to a rapid decrease in phosphorylase a activity followed by a slower increase in glycogen synthase I activity. A reciprocal and coordinate relationship between phosphorylase inactivation and synthase activation in response to glucose was observed; following initial glucose-induced inactivation of phosphorylase, there was a highly significant linear inverse relationship between residual phosphorylase activity and glycogen synthase activation. Insulin led to a further decrease in phosphorylase activity and a 30-50% additional increase in glycogen synthase activity over that caused by glucose. The effects of insulin required the presence of glucose and served to augment acute glucose stimulation of glycogen synthase and inhibition of phosphorylase. Insulin did not perturb the reciprocal and coordinate relationship between phosphorylase inactivation and synthase activation in response to glucose. The results suggest that the ability of insulin to activate hepatic glycogen synthase can be entirely accounted for by its ability to inactivate phosphorylase.  相似文献   

18.
The mechanism for glycogen synthesis stimulation produced by adenosine, fructose, and glutamine has been investigated. We have analyzed the relationship between adenine nucleotides and glycogen metabolism rate-limiting enzymes upon hepatocyte incubation with these three compounds. In isolated hepatocytes, inhibition of AMP deaminase with erythro-9-(2-hydroxyl-3nonyl)adenine further increases the accumulation of AMP and the activation of glycogen synthase and phosphorylase by fructose. This ketose does not increase cyclic AMP or the activity of cyclic AMP-dependent protein kinase. Adenosine raises AMP and ATP concentration. This nucleotide also activates glycogen synthase and phosphorylase by covalent modification. The correlation coefficient between AMP and glycogen synthase activity is 0.974. Nitrobenzylthioinosine, a transport inhibitor of adenosine, blocks (by 50%) the effect of the nucleoside on AMP formation and glycogen synthase but not on phosphorylase. 2-Chloroadenosine and N6-phenylisopropyladenosine, nonmetabolizable analogues of adenosine, activate phosphorylase (6-fold) without increasing the concentration of adenine nucleotides or the activity of glycogen synthase. Cyclic AMP is not increased by adenosine in hepatocytes from starved rats but is in cells from fed animals. [Ethylenebis (oxyethylenenitrilo)]tetraacetic acid (EGTA) blocks by 60% the activation of phosphorylase by adenosine but not that of glycogen synthase. Glutamine also increases AMP concentration and glycogen synthase and phosphorylase activities, and these effects are blocked by 6-mercaptopurine, a purine synthesis inhibitor. Neither adenosine nor glutamine increases glucose 6-phosphate. It is proposed that the observed efficient glycogen synthesis from fructose, adenosine, and glutamine is due to the generation of AMP that activates glycogen synthase probably through increases in synthase phosphatase activity. It is also concluded that the activation of phosphorylase by the above-mentioned compounds can be triggered by metabolic changes.  相似文献   

19.
LY177507 is representative of a series of phenacyl imidazolium compounds that cause marked lowering of blood glucose levels in animal models of noninsulin-dependent diabetes mellitus. In studies conducted with isolated rat hepatocytes, LY177507 inhibited net glucose production from a variety of substrates, inhibited glycolysis from exogenous glucose and endogenous glycogen, inhibited glycogenolysis, and stimulated glycogenesis. These effects of LY177507 appear to be the consequence of activation of glycogen synthase and inactivation of glycogen phosphorylase. In vivo studies with normal fed rats demonstrated a decrease in blood glucose, an increase in hepatic glycogen stores, and an inactivation of glycogen phosphorylase. Phenacyl imidazolium compounds appear to lower blood glucose levels and affect hepatic carbohydrate metabolism by a mechanism unlike other known hypoglycemic compounds.  相似文献   

20.
BACKGROUND: In muscle and liver, glycogen concentrations are regulated by the coordinated activities of glycogen phosphorylase (GP) and glycogen synthase. GP exists in two forms: the dephosphorylated low-activity form GPb and the phosphorylated high-activity form GPa. In both forms, allosteric effectors can promote equilibrium between a less active T state and a more active R state. GP is a possible target for drugs that aim to prevent unwanted glycogen breakdown and to stimulate glycogen synthesis in non-insulin-dependent diabetes. As a result of a data bank search, 5-chloro-1H-indole-2-carboxylic acid (1-(4-fluorobenzyl)-2-(4-hydroxypiperidin-1-yl)-2-oxoethy l)amide, CP320626, was identified as a potent inhibitor of human liver GP. Structural studies have been carried out in order to establish the mechanism of this unusual inhibitor. RESULTS: The structure of the cocrystallised GPb-CP320626 complex has been determined to 2.3 A resolution. CP320626 binds at a site located at the subunit interface in the region of the central cavity of the dimeric structure. The site has not previously been observed to bind ligands and is some 15 A from the AMP allosteric site and 33 A from the catalytic site. The contacts between GPb and CP320626 comprise six hydrogen bonds and extensive van der Waals interactions that create a tight binding site in the T-state conformation of GPb. In the R-state conformation of GPa these interactions are significantly diminished. CONCLUSIONS: CP320626 inhibits GPb by binding at a new allosteric site. Although over 30 A from the catalytic site, the inhibitor exerts its effects by stabilising the T state at the expense of the R state and thereby shifting the allosteric equilibrium between the two states. The new allosteric binding site offers a further recognition site in the search for improved GP inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号