共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Plant regulated aspects of nodulation and N2 fixation 总被引:1,自引:0,他引:1
Abstract. Root nodule organogenesis is described. Plant regulated aspects of nodulation and N2 fixation are reviewed and discussed. Since the effective N2 fixing symbiosis requires the interaction of the host plant and bacterium in an appropriate environment (the rhizosphere and the root nodule) it is essential that research aimed at improving N2 fixation involve a knowledge and understanding of the plant genes that affect nodule development, growth, and function. Current knowledge of host plant genes involved in N2 fixation is summarized. Various experimental approaches to the study of the host plant's contribution to nodulation are noted. The functions of nodule specific proteins (nodulins) in symbiosis are delineated. Future areas of research are suggested. 相似文献
3.
Vibeke Holter 《Ecography》1984,7(2):165-170
Nitrogen fixation activity was determined for Lotus tenuis. Medicago lupulina and Trifolium pratense . The three species grew in clones in grassland in an area reclaimed from brackish water in the 1940s. The N2 [C2 H2 ]-fixation was measured in soil cores throughout 1974 and 1975. From cores taken in dense and uniform stands of the species, the yearly N2 [C2 H2 ]-fixation at maximum cover was estimated. L. tenuis fixed about 4 g N m−2 yr−1 (area with max. cover 130%), i.e. 30–56% of its requirement. Both M. lupulina and T. pratense fixed about 7 g N m−2 yr−1 (maximum cover 37% and 80%) i.e. 67% of their N-requirement. Average N2 [C2 H2 ]-fixation for the whole area was 0.4 g N m−2 yr−1 , considerably less than the N-addition through rainfall. 相似文献
4.
The effect of brassinolide, 24-epibrassinolide and 28-homobrassinolide on nodulation and nitrogenase activity of groundnut was studied. The tested brassinosteroids substantially increased both nodulation and nitrogenase activity. 相似文献
5.
The development of manganese (Mn) toxicity symptoms and its effects on the growth, nodulation, and nitrogen fixation of groundnut genotypes were examined using a quartz-sand/solution culture system. The 11 genotypes tested all accumulated considerable concentrations of manganese (1.04–3.07 mg g-1dry matter) when supplied with 15 μg Mn ml-1of nutrient solution daily. Toxicity symptoms differed between genotypes: some showed no visual effects, some produced marginal leaf spots, and others developed marginal leaf spots coupled with an inward rolling of the margins of the younger leaves. The growth of one genotype (ICG 5394) grown with inorganic nitrogen as its source of N was more severely affected by Mn toxicity than when dependent on symbiotic fixation for its nitrogen. 相似文献
6.
Medicago ciliaris (L.) All., a salt-tolerant legume, was not nodulated by Rhizobium meliloti (2011), a strain commonly used for field inoculation of alfalfas. A strain of Rhizobium meliloti (ABS7) was isolated from saline Algerian soils. It is generally more salt-resistant than strain 2011, exhibits a higher rate of growth and induces the formation of nodules on M. ciliaris . C2 H2 reduction activity of M. ciliaris nodules was inhibited by 50% in the presence of 200 m M NaCl in the culture medium. whereas 100 m M NaCl was sufficient to inhibit the activity of nodules of M. sativa (L. cv. Europe). C2 H2 reduction by bacteroids, isolated from nodules of the two species of alfalfa, was directly inhibited by the presence of NaCl in the incubation medium. In both cases, glucose could support bacteroid nitrogen fixation, but only in a narrow range of O2 tensions. Bacteriods from M. ciliaris were more tolerant to salt than M. sativa ones. The salt resistance of bacteroids from nodules of plants watered with NaCl solutions was not improved in either species. Salt directly added to the incubation mixture of bacteroids or to the culture medium of plants inhibited O2 uptake of bacteroids isolated from nodules of both M. ciliaris and M. sativa . The depressive effect of NaCl on bacteroid C2 H2 reduction could be directly related to the drop in bacteroid respiration. The nitrogen fixation capacity of the M. ciliaris-Rhizobium meliloti (ABS7) symbiosis under saline conditions leads us to recommend the introduction of this association in salt-troubled areas. 相似文献
7.
The (C2 H4 + H2(C2 H2 ) )/15 N2 ratios of 15 clover- Rhizobium symbionts. soybean, and black medick symbionts were measured. Relative efficiency based on the C2H4 production and on 15 N2 incorporation were compared, and in most symbionts there was little difference between the two measures of relative efficiency. Total measurable electron flux through nitrogenase during acetylene reduction and 15 N2 incorporation were nearly equal for most symbionts studied. The relative efficiency and the (C2 H4 + H2(C2 H2 ) )/15 N2 ratio showed an inverse correlation. Use of this ratio appears preferable to use of the ratio of C2H2 reduction/N2 reduction. Some evolution of H2 was observed in the presence of C2 H2 . 相似文献
8.
Leif Skøt 《Physiologia plantarum》1983,59(4):581-584
The quantitative relationship between C2 H2 reduction, H2 evolution and 15 N2 fixation was investigated in excised root nodules from pea plants ( Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2 H2 /N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day after planting. After correction for H2 evolution in air, the factor (C2 H2 -H2 )/N2 decreased to values near the theoretical value 3, or in one case to a value significantly ( P < 0.05) below 3. The proportion of the total electron flow through nitrogenase, which is not wasted in H2 production but used for N2 reduction, is often stated as the relative efficiency (1-H2 /C2 H2 ). This factor varied significantly ( P < 0.05) during the growth period. The actual allocation of electrons to H2 and N2 , expressed as the H2 /N2 ratio, was independent of plant age, however. This discrepancy and the observation that the (C2 H2 -H2 )/N2 conversion factor tended to be lower than 3, suggests that the C2 H2 reduction assay underestimates the total electron flow through nitrogenase. 相似文献
9.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol − 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant − 1 h − 1 compared with 367 ± 46 ng 15N fixed plant − 1 h − 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant − 1 h − 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes. 相似文献
10.
The combined effects of carbon dioxide (CO2) enrichment and water deficits on nodulation and N2 fixation were analysed in soybean [Glycine max (L.) Merr.]. Two short-term experiments were conducted in greenhouses with plants subjected to soil drying, while exposed to CO2 atmospheres of either 360 or 700 μmol CO2 mol–1. Under drought-stressed conditions, elevated [CO2] resulted in a delay in the decrease in N2 fixation rates associated with drying of the soil used in these experiments. The elevated [CO2] also allowed the plants under drought to sustain significant increases in nodule number and mass relative to those under ambient [CO2]. The total non-structural carbohydrate (TNC) concentration was lower in the shoots of the plants exposed to drought; however, plants under elevated CO2 had much higher TNC levels than those under ambient CO2. For both [CO2] treatments, drought stress induced a substantial accumulation of TNC in the nodules that paralleled N2 fixation decline, which indicates that nodule activity under drought may not be carbon limited. Under drought stress, ureide concentration increased in all plant tissues. However, exposure to elevated [CO2] resulted in substantially less drought-induced ureide accumulation in leaf and petiole tissues. A strong negative correlation was found between ureide accumulation and TNC levels in the leaves. This relationship, together with the large effect of elevated [CO2] on the decrease of ureide accumulation in the leaves, indicated the importance of ureide breakdown in the response of N2 fixation to drought and of feedback inhibition by ureides on nodule activity. It is concluded that an important effect of CO2 enrichment on soybean under drought conditions is an enhancement of photoassimilation, an increased partitioning of carbon to nodules and a decrease of leaf ureide levels, which is associated with sustained nodule growth and N2 rates under soil water deficits. We suggest that future [CO2] increases are likely to benefit soybean production by increasing the drought tolerance of N2 fixation. 相似文献
11.
John D. Tjepkema 《Physiologia plantarum》1997,99(4):648-652
Preliminary studies have indicated that after addition of C2 H2 there is a rapid decline in nitrogenase activity in the nodules of Datisca glomerata . The present work was undertaken to determine whether (1) there is also a decline in respiration and (2) the decline is associated with the cessation of ammonia production. The rates of C2 H4 and CO2 evolution by nodulated root systems of Datisca were measured as a function of time after exposure to C2 H2 . The peak rate of C2 H4 evolution occurred at 30 s after C2 H2 exposure, while the rate of CO2 evolution started to decline at 60 s after exposure to C2 H2 . Incubation of nodules in a gas mixture containing Ar also caused a decline in CO2 evolution. Further, pretreatment with Ar eliminated most of the C2 H2 -induced decline in nitrogenase activity and CO2 evolution. These C2 H2 - and Ar-induced declines in Datisca nodules are more rapid than those reported in any other nodules. They are evidence that continued ammonia formation is essential for maintenance of normal nitrogenase activity in Datisca nodules. 相似文献
12.
Production of grain legumes is severely reduced in salt-affected soils because their ability to form and maintain nitrogen-fixing nodules is impaired by both salinity and sodicity (alkalinity). Genotypes of chickpea, Cicer arietinum, with high nodulation capacity under stress were identified by field screening in a sodic soil in India and subsequently evaluated quantitatively for nitrogen fixation in a glasshouse study in a saline but neutral soil in the UK. In the field, pH 8.9 was the critical upper limit for most genotypes studied but genotypes with high nodulation outperformed all others at pH 9.0-9.2. The threshold limit of soil salinity for shoot growth was at ECe 3 dS m(-1), except for the high-nodulation selection for which it was ECe 6. Nodulation was reduced in all genotypes at salinities above 3 dS m(-1) but to a lesser extent in the high-nodulation selection, which proved inherently superior under both non-saline and stress conditions. Nitrogen fixation was also much more tolerant of salinity in this selection than in the other genotypes studied. The results show that chickpea genotypes tolerant of salt-affected soil have better nodulation and support higher rates of symbiotic nitrogen fixation than sensitive genotypes. 相似文献
13.
14.
M. DURGESHA 《The Annals of applied biology》1993,123(3):703-708
Cultivar TMV-2 of groundnut plant {Arachis hypogaea L.) was grown in a nutrient solution containing fluchloralin at the rate of either 2 mg litre-1 or 4 mg litre“1. Protein synthesis and hydroxyproline content in the cell walls of roots, stem and leaves were determined. Free amino acids content and total ammonia in leaves and roots were also analysed. Presence of fluchloralin did not adversely affect protein synthesis. No significant effect of herbicide was observed on hydroxyproline content of a purified cell wall fraction of groundnut roots, stem and leaves. The total amount of ammonia increased in roots and leaves of plants which received the higher concentration of fluchloralin. With the exception of aspartic acid, asparagine, glutamic acid and glutamine, free amino acids content decreased considerably with herbicide treatment. Alanine and glycine were strongly reduced. It is suggested that transamination reactions could be affected and the process of senescence may be enhanced. 相似文献
15.
16.
Symbiotic N2 fixation in a high Alpine grassland: effects of four growing seasons of elevated CO2 总被引:1,自引:0,他引:1
J. A. Arnone Iii 《Functional ecology》1999,13(3):383-387
1. Increasing carbon dioxide concentration (E: 680 μl CO2 litre–1 vs ambient, A: 355 μl CO2 litre–1 ) around late-successional Alpine sedge communities of the Swiss Central Alps (2450 m) for four growing seasons (1992–1995) had no detectable effect on symbiotic N2 fixation in Trifolium alpinum —the sole N2 -fixing plant species in these communities (74 ± 30 mg N m–2 year–1 , A and E plots pooled).
2. This result is based on data collected in the fourth growing season showing that elevated CO2 had no effect on Trifolium above-ground biomass (4·4 ± 1·7 g m–2 , A and E plots pooled, n = 24) or N content per unit land area (124 ± 51 mg N m–2 , A and E pooled), or on the percentage of N Trifolium derived from the atmosphere through symbiotic N2 fixation (%Ndfa: 61·0 ± 4·1 across A and E plots) estimated using the 15 N dilution method.
3. Thus, it appears that N inputs to this ecosystem via symbiotic N2 fixation will not be dramatically affected in the foreseeable future even as atmospheric CO2 continues to rise. 相似文献
2. This result is based on data collected in the fourth growing season showing that elevated CO
3. Thus, it appears that N inputs to this ecosystem via symbiotic N
17.
Grafting experiments on the nature of the decline in N2 fixation during fruit development in soybean
Nasir S. A. Malik 《Physiologia plantarum》1983,57(4):561-564
A decline in nitrogen fixation at the time of pod-filling is persistently seen in soybeans. This phenomenon was studied by grafting experiments. Young scions with 3 nodes were grafted near the base of fruiting stocks which had passed their peak of nitrogen fixation. These grafts produced a second peak of nitrogen fixation on the same root system, indicating that the decline is reversible. If the scions were grafted near the apex of the fruiting stocks then the second peak of nitrogen fixation was very small. Thus, the translocation system could have an important role in regulating the decline in nitrogen fixation. Grafting of a second shoot of the same age as the rootstock, after the decline in nitrogen fixation, did not reduce the rate of decline even when the fruits from the scion were removed. It appears that physiological changes in different components of the shoot jointly regulate the decline in the rate of nitrogen fixation in soybeans. 相似文献
18.
Abstract. Germination modes of lower seeds of cocklebur (Xanthium pennsylvanicum Wallr.) under different water stresses, prepared with mannitol solution, were examined in relation to gaseous factors. As the concentration of mannitol increased, germination was increasingly inhibited at a mode which was drawn by two straight lines having different slopes and meeting at an angle. One is a sharp line occurring at the lower concentrations of mannitol; the other is a gentle line occurring at higher concentrations of mannitol. The former reflected the growth response of axial tissues to mild water stress, whereas the latter reflected the growth response of cotyledonary tissues to severe water stress. The germination potential of cocklebur seeds increased with increasing temperature. Thus, the seeds were more resistant to water stress at higher than al lower temperatures. This increased germination potential under water stress resulted from the greater growth potential of axial tissues, but not cotyledonary tissues, at higher temperature. Increased O2 levels improved both the reduced axial and cotyledonary growth under water stress. Carbon dioxide predominantly enhanced axial growth under water stress, whereas C2H4 exclusively enhanced cotyledonary growth. Thus, these gases were effective in potentiating germination under water stress. When combined with each other, these gases caused more pronounced growth of the axial and cotyledonary tissues, leading to germination under more severe water stresses. Maximal axial and cotyledonary growth under water stress occurred in the simultaneous presence of CO2, C2H4 and O2, which allowed the germination at higher mannitol concentrations above 0.6 kmol m?3 From these results, it was suggested that cocklebur seeds would override water stress by depending upon both the Corresponding axial growth and the C2H4-responding cotyledonary growth. 相似文献
19.
The effects of increasing rhizosphere pO2on nitrogenase activity and nodule resistance to O2diffusion were investigated in soybean plants [Glycine max (L.) Merr. cv. Harosoy 63] in which nitrogenase (EC 1.7.99.2) activities were inhibited by (a) removal of the phloem tissue at the base of the stem (stem girdling), (b) exposure of roots to 10 mM NO3over 5 days (NO3-treated), or (c) partial inactivation of nitrogenase activity by an exposure of nodulated roots to 100 kPa O2(O2-inhibitcd). In control plants and in plants which had been treated with 100 kPa O2, increasing rhizosphere O2concentrations in 10 kPa increments from 20 to 70 kPa did not alter the steady-state nitrogenase activity. In contrast, in plants in which nitrogenase activities were depressed by stem girdling or by exposure to NO3, increasing rhizosphere pO2resulted in a recovery of 57 or 67%, respectively, of the initial, depressed rates of nitrogenase activity. This suggests that the nitrogenase activity of stem-girdled and NO3-treated soybeans was O2-limited. For each treatment, theoretical resistance values for O2diffusion into nodules were estimated from measured rates of CO2exchange, assuming a respiratory quotient of 1.1 and 0 kPa of O2in the infected cells. At an external partial pressure of 20 kPa O2, the stem-girdled and NO3--treated plants displayed resistance values which were 4 to 8.6 times higher than those in the nodules of the control plants. In control and O2-inhibited plants, increases in pO2from 20 to 70 kPa in 10 kPa increments resulted in a 2.5- to 3.9-fold increase in diffusion resistance to O2, and had little effect on either respiration or nitrogenase activity. In contrast, in stem-girdled and NO3--treated plants, increases in external pO2had little effect on diffusion resistance to O2, but resulted in a 2.3- to 3.2-fold increase in nodule respiration and nitrogenase activity. These results are consistent with stem-girdling and NO3--inhibition treatments limiting phloem supply to nodules causing an increase in diffusion resistance to O2at 20 kPa and an apparent insensitivity of diffusion resistance to increases in external pO2. 相似文献