首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of antioxidant activity by using different in vitro methods   总被引:13,自引:0,他引:13  
In this study, six common tests for measuring antioxidant activity were evaluated by comparing four antioxidants and applying them to beverages (tea and juices): Trolox equivalent antioxidant capacity assay (TEAC I-III assay), Total radical-trapping antioxidant parameter assay (TRAP assay), 2,2-diphenyl- l -picrylhydrazyl assay (DPPH assay), N , N -dimethyl- p -phenylendiamine assay (DMPD assay), Photochemiluminescence assay (PCL assay) and Ferric reducing ability of plasma assay (FRAP assay). The antioxidants included gallic acid representing the group of polyphenols, uric acid as the main antioxidant in human plasma, ascorbic acid as a vitamin widely spread in fruits and Trolox ® as water soluble vitamin E analogue. The six methods presented can be divided into two groups depending on the oxidising reagent. Five methods use organic radical producers (TEAC I-III, TRAP, DPPH, DMPD, PCL) and one method works with metal ions for oxidation (FRAP). Another difference between these tests is the reaction procedure. Three assays use the delay in oxidation and determine the lag phase as parameter for the antioxidant activity (TEAC I, TRAP, PCL). They determine the delay of radical generation as well as the ability to scavenge the radical. In contrast, the assays TEAC II and III, DPPH, DMPD and FRAP analyse the ability to reduce the radical cation (TEAC II and III, DPPH, DMPD) or the ferric ion (FRAP). The three tests acting by radical reduction use preformed radicals and determine the decrease in absorbance while the FRAP assay measures the formed ferrous ions by increased absorbance. Gallic acid was the strongest antioxidant in all tests with exception of the DMPD assay. In contrast, uric acid and ascorbic acid showed low activity in some assays. Most of the assays determine the antioxidant activity in the micromolar range needing minutes to hours. Only one assay (PCL) is able to analyse the antioxidant activity in the nanomolar range. Black currant juice showed highest antioxidant activity in all tests compared to tea, apple juice and tomato juice. Despite these differences, results of these in vitro assays give an idea of the protective efficacy of secondary plant products. It is strongly recommended to use at least two methods due to the differences between the test systems investigated.  相似文献   

2.
Vanillin, a plant derived natural product, used as food flavoring agent and its positional isomer o-vanillin, have been tested for their ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical using high performance liquid chromatography (HPLC). Trolox, a water-soluble analogue of vitamin E and a well-known antioxidant was used as a reference compound. The DPPH radical was monitored at 517 nm and its retention time was 8.6 min. From the decrease in optical density of DPPH radical in the presence of the test compounds, it was observed that o-vanillin was a more effective scavenger than vanillin. At equimolar concentrations (1 mM), vanillin and o-vanillin exhibited 22.9% and 66.4% DPPH radical scavenging activity, respectively. The kinetics of the reaction of vanillin and o-vanillin with DPPH radical was studied using stopped flow spectrophotometry and their rate constants were estimated to be 1.7 +/- 0.1 M(-1)s(-1) and 10.1 +/- 0.8 M(-1)s(-1), respectively. In comparison, the rate constant for the reaction of trolox with DPPH was estimated to be 360.2 +/- 10.1 M(-1)s(-1). These scavenging reactions involve electron/H-atom transfer from antioxidant to DPPH. To confirm this, one electron reduction potentials of these compounds were estimated using cyclic voltammetry which showed that o-vanillin was more easily oxidized than vanillin. The reduction potential for o-vanillin was about 1.5 times that of trolox. These results demonstrate that o-vanillin is a more potent antioxidant than vanillin.  相似文献   

3.
A study is made of the effect of GSH as a co-antioxidant with vitamin E during free radical chain autoxidation inhibition studies of dilinoleoylphosphatidylcholine (DLPC) liposomes. Oxidations are initiated in the aqueous phase with azobis(2-amidinopropane hydrochloride) and in the bilayer phase of DLPC with azobis(2,4-dimethylvaleronitrile) under known conditions of the rate of free radical chain initiation (Ri). In reactions initiated in the aqueous phase, GSH is not an efficient antioxidant when acting alone; however, in cooperation with vitamin E in the bilayers, it does effect significant extensions of the efficient induction period of vitamin E. Quantitative studies show that GSH "spares" 0.4 molecules of vitamin E in the bilayer/molecule of GSH and therefore terminates approximately 0.8 peroxyl radical chains as a co-antioxidant with vitamin E. In contrast, GSH is not an effective co-antioxidant with an efficient water-soluble antioxidant, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox). GSH spares only 0.08 molecules of Trolox/molecule of GSH during autoxidation initiated in the aqueous phase with azobis(2-amidinopropane hydrochloride). The inhibition rate constant for GSH in trapping aqueous phase peroxyls is at least an order of magnitude less than that of Trolox. When peroxidation is initiated in the bilayer phase of DLPC with azobis(2,4-dimethylvaleronitrile), GSH is not an effective co-antioxidant with either vitamin E in the bilayer or Trolox in the water. Comparatively higher ratios of GSH to E (GSH/E = 50) or Trolox (GSH/Trolox = 30) are required to give significant extensions of the E or Trolox induction periods. GSH is estimated to preserve only approximately one vitamin E or Trolox molecule for a hundred GSH for peroxidations initiated in the DLPC bilayers. From the kinetic studies and GSH decay studies during inhibition periods, it is concluded that GSH does not act synergistically by regenerating ArOH from the phenoxyl, ArO, radical of vitamin E or Trolox. The mode of antioxidant action of GSH is concluded to be that of trapping peroxyl radicals in the aqueous phase and thereby indirectly sparing vitamin E in the bilayer.  相似文献   

4.
Microcrystals of monosodium urate monohydrate(MSUM)induce cytolysis and hemolysis inerythrocytes.In this report,we studied the effect of vitamin E on MSUM-mediated hemolysis in humanerythrocytes.Vitamin E significantly inhibited hemolysis induced by MSUM.The hydroxyl group in thechromanol ring of vitamin E is dispensable for protecting erythrocytes against hemolysis induced by MSUM,indicating that the inhibitory effect of vitamin E is not due to its antioxidant properties.However,both thechromanol ring and the isoprenoid side chain are important for vitamin E to suppress MSUM-induced hemolysis.Our current study suggests that vitamin E inhibits hemolysis induced by MSUM as a membrane stabilizer.  相似文献   

5.
Rice bran oil was extracted by microwave-assisted extraction with isopropanol and hexane using a solvent-to-rice bran ratio of 3:1 (w/w). The experiments were done in triplicate at 40, 60, 80, 100, and 120 degrees C with a total extraction time of 15 min/sample. The oil components were separated by normal-phase HPLC and quantified with a fluorescence detector. The radical scavenging capability of the oil was tested with DPPH and was expressed as mumol Trolox Equivalent Antioxidant Activity. The increase in total vitamin E with temperature from 40 to 120 degrees C was 59.63% for isopropanol and 342.01% for hexane. Isopropanol was the best solvent for the extraction of gamma-tocopherol and gamma-tocotrienol as compared with hexane for both microwave-assisted and conventional solvent extraction. Isopropanol was better for oil yield extraction at high temperatures. Samples extracted with isopropanol at 120 degrees C had higher antioxidant activity. No differences in oil yield, total vitamin E, and antioxidant activity of oil was noticed between the two methods (microwave-assisted and solvent extractions), at 40 degrees C. No degradation of alpha-tocopherol was noticed during the process.  相似文献   

6.
《Life sciences》1994,55(15):PL271-PL276
We have compared the peroxyl radical scavenger ability of melatonin with that of vitamin E, vitamin C and reduced glutathione (GSH). In the assay system, β-phycoerythrin (β-PE) was used as fluorescent indicator protein, 2-2′-azo-bis(2-amidinopropane)dihydrochloride as a peroxyl radical generator and the water soluble vitamin E analogue, Trolox, as reference standard. Results are expressed as oxygen radical absorbing capacity (ORACperox) units, where 1 ORAC unit equals the net protection produced by 1 μM Trolox. A linear correlation of ORAC values with concentration (0.5–4 μM) of all the substances tested has been observed. However, on molar basis, the relative ORACperox of Trolox, vitamin C, GSH and melatonin was 1 : 1.12 : 0.68 : 2.04, respectively. Thus, melatonin, which is a lipid-soluble compound, was twice more active than vitamin E, believed to be the most effective lipophilic antioxidant.  相似文献   

7.
7种广西产甜茶抗氧化活性的比较   总被引:1,自引:0,他引:1  
通过清除二苯代苦味酰基(1,1-diphenyl-2-picrylhydrazyl,DPPH)法、铁离子还原测定(ferric reducing antioxidant power,FRAP)法、亚铁离子螯合(ferrous ion-chelating,FIC)法、β-胡萝卜素-亚油酸法等4种体外抗氧化活性测定方法,首次比较了3种茶科属茶叶和7种广西产甜茶水提物的抗氧化活性,同时用Folin-Ciocalteus法测定了其总多酚的含量。研究结果表明,多穗柯甜茶和藤茶的总多酚含量高于其他供试品。藤茶具有很好的清除DPPH·的能力,高于绿茶及阳性对照水溶性维生素E(Trolox)和人工合成抗氧化剂二丁基羟基甲苯(butylated hydroxytoluene,BHT)。甜叶菊茶和悬钩甜茶的金属离子螯合能力均高于绿茶。其中,黄杞和牛白藤两种植物的抗氧化活性为首次报道。由此可见,广西产甜茶均具有较高的开发利用价值,是治疗和防治慢性代谢性疾病的重要研究对象。对广西产甜茶的研究对于了解和抢救某些少数民族的历史文化具有重要意义,为别样茶的抗氧化研究奠定了基础,值得进一步探索和开发。  相似文献   

8.
A series of 3-benzylidene-7-alkoxychroman-4-one derivatives were synthesized and evaluated for their antioxidant activities. The antioxidant activity was assessed using three methods, namely, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP), and thiobarbituric acid reactive substances (TBARS) assays. 3-Benzylidene-7-alkoxychroman-4-one derivatives bearing catecholic group on benzylidene moiety exhibited excellent antioxidant activity. Compounds having catechol moiety exhibited potent antioxidant activities in all tested methods and they were more active than the reference drug, Trolox.  相似文献   

9.
Tocopherol is believed to be the most potent naturally occurring chain-breaking antioxidant. Hence, its refined phenolic head group chromanol may represent an optimum evolutionary solution to the problem of free-radical chain reactions in the lipid bilayer. To test the universal validity of this assumption beyond phenolic head groups, we have synthesized aromatic amine analogues of vitamin E and trolox with otherwise closely matching physicochemical properties: NH-toc and NH-trox. We have found that NH-toc and NH-trox were significantly more potent free radical scavengers, lipid peroxidation inhibitors and cytoprotective agents than their phenolic templates, tocopherol and trolox. In a chemical sense, thus, the chromanol head group does not constitute a global optimum for the design of chain-breaking antioxidants.  相似文献   

10.
Objective: It appears that the atherosclerotic plaque is a prooxidant environment where some molecules that are normally antioxidants, including vitamins C and E, may act as prooxidants that contribute to atherosclerosis by oxidizing LDL. Some molecules can act as co-antioxidants to eliminate this prooxidant effect by recycling or other mechanisms of supplementation. Fibrinogen and other acute phase proteins found in the plaque are antioxidants. We hypothesized that fibrinogen can act as a co-antioxidant to supplement vitamin E thereby eliminating its oxidative effect under prooxidant conditions. We tested a model system for this hypothesis using the vitamin E analogue Trolox in a cell free system.

Methods: LDL was oxidized using 5 umol/l copper. Antioxidant conditions were achieved by adding the antioxidants immediately with LDL, while prooxidant conditions were created by adding antioxidants after a 40 min delay. Oxidation was monitored as the lag phase at 234 nm.

Results: Under antioxidant conditions, the protective effect of fibrinogen and Trolox combined together were about equal to the sum of the anitioxidant effects of each alone (additive), while under prooxidant conditions the combined protection was 54-200% greater (synergistic). These effects were different than those of vitamin C with Trolox in that under antioxidant conditions fibrinogen and Trolox were additive while vitamin C and Trolox showed strong synergistic effects, and in that unlike vitamin C and Trolox fibrinogen showed no prooxidant tendencies under prooxidant reaction conditions.

Conclusions: The data indicated that fibrinogen did act as a co-antioxidant to supplement Trolox and eliminate its prooxidant effect, most probably, by directly quenching the phenoxyl radical, because unlike vitamin C, fibrinogen did not appear to recycle vitamin E. But fibrinogen may act as a universal antioxidant, since unlike Trolox and vitamin C, it showed little tendency toward becoming a prooxidant.  相似文献   

11.
2,5,7,8-tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman (alpha-CEHC) has been identified as a major water-soluble metabolite of vitamin E, which circulates in the blood and is excreted with the urine. The aim of this study was to assess the antioxidant activity of alpha-CEHC using several methods with different prooxidant challenges. In the Oxygen Radical Absorbance Capacity assay, a fluorescent protein acts as a marker for oxidative damage induced by peroxyl radicals. In the Trolox Equivalent Antioxidant Capacity (TEAC) assay, a stable free radical, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS.+) is reduced directly by antioxidants. Scavenging properties vs. reactive nitrogen species were studied measuring the effects on tyrosine nitration after reaction with peroxynitrite. Trolox, alpha-tocopherol, ascorbic acid, and (-)-epicatechin were simultaneously tested in order to compare their antioxidant activities. In all mentioned systems, alpha-CEHC exhibited antioxidant properties similar to those of Trolox. We conclude that alpha-CEHC is a molecule with good antioxidant activity, having the advantage over Trolox of being a naturally occurring compound. These properties might be useful for research or industrial purposes.  相似文献   

12.
Stobadine and its two structural analogues, dehydrostobadine and N-acetylated stobadine were used to examine how structural alteration in the close proximity of the indolic nitrogen would influence the antioxidant activity of the substituted pyridoindoles. The compounds were tested for their efficiency to scavenge stable free radicals of alpha,alpha'-diphenyl-beta-picrylhydrazyl as well as for their ability to prevent 2,2'-azobis-(2-amidinopropane)hydrochloride induced peroxidation of dioleoyl phosphatidylcholine liposomes. The results proved that the substituted pyridoindoles can act as potent scavengers of peroxyl radicals both in aqueous and lipid phases, the antioxidant activity being comparable with that of Trolox. Structural changes in the proximity of the indolic nitrogen were found crucial for the radical scavenging efficiency: aromatisation of the pyridoindole skeleton in dehydrostobadine lowered the antioxidant activity, while acetylation of the indolic nitrogen completely abolished the ability to scavenge peroxyl radicals. The results are in agreement with the notion that the antioxidant activity of stobadine and of the related pyridoindoles may be mediated via the indolic nitrogen centre. When stobadine and Trolox were present simultaneously in liposomal incubations, Trolox spared stobadine in a dose-dependent manner; a direct interaction of Trolox with stobadinyl radical appears to be a plausible explanation with possible consequences for the antioxidant capacity of stobadine under in vivo conditions, where re-cycling of stobadine by vitamin E might occur.  相似文献   

13.
采用DPPH法、FRAP法、ABTS法和清除羟基自由基法四种抗氧化活性方法,测定了红背叶不同溶剂萃取60%EtOH提取物得到的部位清除自由基的能力.结果表明,乙酸乙酯提取物的抗氧化能力最强,强于阳性对照VC和Trolox;其次是60%乙醇提取物,其抗氧化能力基本与阳性对照BHA相当.  相似文献   

14.
Coumarin Schiff-bases (CSB) possessing different substituents on the 4-methyl-2-substituted phenyl imino-2H-chromene-7-ol molecule were evaluated for their in-vitro antioxidant and plausible anti-inflammatory potential. The antioxidant studies of selected CSB were carried out by determining their reducing power, OH* radical scavenging activity, scavenging of stable 2,2-diphenyl-l-picrylhydrazine (DPPH*) radical and inhibition of the polyphenol oxidase (PPO) enzyme. The assessment of possible anti-inflammatory potential was performed by trypsin inhibition assay and inhibition of beta-glucuronidase. All the CSBs under study showed significant reducing effects. The majority of the tested CSB were found to be effective scavengers of DPPH* radical with moderate to low OH* scavenging ability and significantly inhibited the activity of PPO. With few exceptions, results from the inhibition assay of trypsin and beta-glucuronidase were not encouraging, however they may be helpful in defining structure-activity relationships in further optimization of the lead molecules.  相似文献   

15.
The peroxidation of human erythrocytes induced by peroxyl radical initiator and its inhibition by several gallate esters (e.g., propyl, methyl, ethyl) and Trolox (a more polar analogue of vitamin E) have been studied. The antioxidant activity was determined on erythrocytes against hemolysis generated by a thermal activator, 2,2'-azobis-(2-amidinopropane)dihydrogenchloride. It was found that propyl gallate and its two analogues were more effective than Trolox in preventing cell lysis. However, the combination of gallate esters and Trolox produced a protective effect exceeding the arithmetic sum of their individual contributions. These perceived synergisms occur at more than one level of Trolox at a given level of a gallate ester.  相似文献   

16.
Quantitative kinetic methods of autoxidation are used to determine the antioxidant activities of two water-soluble antioxidants of the chromanol type, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and 6-hydroxy-2,5,7,8- tetramethyl-2-N,N,N-trimethylethanaminium methylbenzene-sulfonate (MDL 73404), during free radical peroxidation of phospholipid membranes of different charge types. The stoichiometric factor (n) for peroxyl radical trapping for both Trolox and MDL 73404 was found to be 2. Trolox was found to partition partially, approximately 20%, into the lipid phase of liposomes. The antioxidant activity of Trolox during peroxidation of membranes determined by measurements of the absolute rate constant for inhibition of oxygen uptake,kinh, was found to vary with the membrane surface charge that is controlled by variation in pH. When peroxidation is initiated in the lipid phase by azo-bis-2,4-dimethylvaleronitrile (ADVN), using a typical zwitterionic liposome, dilinoleoylphosphatidyl choline (DLPC), the kinh was found to be 2.98 × 103 M−1s−1. The kinh of Trolox increased approximately 2-fold for membranes that have positive surface, including DLPC at pH 4, DLPC containing stearylamine at pH 7, and for a membrane of dimyristoylphosphatidic acid containing linoleic acid (DMPA/LA). Conversely, Trolox does not inhibit peroxidation of negatively charged dilinoleoylphosphatidyl glycerol (DLPG) at pH 7–11. Studies made of the positively charged MDL 73404 show that its antioxidant activity using DLPC and DLPG is pH dependent. Trolox inhibits the peroxidations of DLPC initiated in the aqueous phase by azo-bis(2-amidinopropane·HCl)(ABAP) at pH 4 or 7. However, Trolox does not inhibit the peroxidation of DLPG at pH 7. The different antioxidant activities of Trolox and MDL 73404 are rationalized in terms of a peroxyl-radical diffusion model and specific charge interactions between antioxidants and membrane surface.  相似文献   

17.
In the redox antioxidant network, dihydrolipoate can synergistically enhance the ascorbate-dependent recycling of vitamin E. Since the major endogenous thiol antioxidant in biological systems is glutathione (GSH) it was of interest to compare the effects of dihydrolipoate with GSH on ascorbate-dependent recycling of the water-soluble homologue of vitamin E, Trolox, by electron spin resonance (ESR). Trolox phenoxyl radicals were generated by a horseradish peroxidase (HRP)-hydrogen peroxide (H2O2) oxidation system. In the presence of dihydrolipoate, Trolox radicals were suppressed until both dihydrolipoate and endogenous levels of ascorbate in skin homogenates were consumed. Similar experiments made in the presence of GSH revealed that Trolox radicals reappeared immediately after ascorbate was depleted and that GSH was not able to drive the ascorbate-dependent Trolox recycling reaction. However, at higher concentrations GSH was able to increase ascorbate-mediated Trolox regeneration from the Trolox radical. ESR and spectrophotometric measurements demonstrated the ability of dihydrolipoate or GSH to react with dehydroascorbate, the two-electron oxidation product of ascorbate in this system. Dihydrolipoate regenerated greater amounts of ascorbate at a much faster rate than equivalent concentrations of GSH. Thus the marked difference between the rate and efficiency of ascorbate generation by dihydrolipoate as compared with GSH appears to account for the different kinetics by which these thiol antioxidants influence ascorbate-dependent Trolox recycling.  相似文献   

18.
The antioxidative properties of ascorbigen, one of the major indole-derived compounds of Brassica vegetables, were systematically evaluated using multiple assay systems with comparison to the well-known antioxidants ascorbic acid and Trolox. We first performed assays using model radicals, DPPH radical, galvinoxyl radical, and ABTS radical cation (ABTS?+). Ascorbigen showed stronger activity than that of ascorbic acid in the ABTS?+-scavenging assay but showed no activity in the DPPH radical- and galvinoxyl radical-scavenging assays. In the ABTS?+-scavenging assay, the indole moiety of ascorbigen contributed to scavenging of the radicals to produce indole-3-aldehyde as one of the final reaction products. The activity of ascorbigen was then evaluated by an oxygen radical absorbance capacity assay and an oxidative hemolysis inhibition assay using physiologically relevant peroxyl radicals, AAPH-derived radicals. Ascorbigen showed much stronger antioxidant activity than did ascorbic acid and Trolox. Therefore, antioxidant activity of ascorbigen might be more beneficial than has been thought for daily health care.  相似文献   

19.
Peroxidation of lipids is of significant interest owing to the evidence that peroxyl radicals and products of lipid peroxidation may be involved in the toxicity of compounds initiating a deteriorative reaction in the processing and storage of lipid-containing foods. In view of the significance of the antioxidant role of the dietary compound vitamin E and its water-soluble analogue Trolox in research of lipid-containing foods, it is desirable to determine more specifically how and where they operate its antioxidant activity in lipid membranes. In this study, unilamellar liposomes of phosphatidylcholine were used as membrane mimetic systems to estimate the antioxidant properties of vitamin E and Trolox and establish a relationship between their interactions with the membrane and their consequent antioxidant activity. Lipid peroxidation was initiated by the peroxyl radical (ROO) in lipid and aqueous media by the thermal decomposition of azocompounds and was assessed by the fluorescence intensity decay of the fluorescent probe diphenylhexatriene propionic acid. Results obtained showed that membrane lipoperoxidation is related not only to the scavenging characteristics of the compounds studied but also to their ability to interact with the lipid bilayers, and consequently liposomes provide additional information to that obtained currently from assays performed in aqueous buffer media.  相似文献   

20.
Lacidipine, a new, long-acting antihypertensive dihydropyridine calcium antagonist was tested for potential antioxidant effect in a series of tests that consider specific radical species. A direct quenching of several radical species could be measured. Moreover, in biological membranes deriving from rat brain tissue, lacidipine showed an activity comparable to reference antioxidant compounds like vitamin E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号