首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A fructose diphosphate aldolase has been isolated from ascarid muscle and crystallized by simple column chromatography and an ammonium sulfate fractionation procedure. It was found to be homogeneous on electrophoresis and Sephadex G-200 gel filtration. This enzyme has a fructose diphosphate/fructose 1-phosphate activity ratio close to 40 and specific activity for fructose diphosphate cleavage close to 11. Km values of ascarid aldolase are 1 × 10−6m and 2 × 10−3m for fructose diphosphate and fructose 1-phosphate, respectively. The enzyme reveals a number of catalytic and molecular properties similar to those found for class I fructose diphosphate aldolases. It has C-terminal functional tyrosine residues, a molecular weight of 155,000, and is inactivated by NaBH4 in presence of substrate. Data show the presence of two types of subunits in ascarid aldolase; the subunits have different electrophoretic mobilities but similar molecular weights of 40,000. Immunological studies indicate that the antibody-binding sites of the molecules of the rabbit muscle aldolase A or rabbit liver aldolase B are structurally different from those of ascarid aldolase. Hybridization studies show the formation of one middle hybrid form from a binary mixture of the subunits of ascarid and rabbit muscle aldolases. Hybridization between rabbit liver aldolase and ascarid aldolase was not observed. The results indicate that ascarid aldolase is structurally more related to the mammalian aldolase A than to the aldolase B.  相似文献   

3.
Specific anion binding to fructose diphosphate aldolase from rabbit muscle   总被引:7,自引:0,他引:7  
A Ginsburg  A H Mehler 《Biochemistry》1966,5(8):2623-2634
  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
The subunit structure of mammalian fructose diphosphate aldolase   总被引:20,自引:0,他引:20  
  相似文献   

12.
13.
Distribution of fructose diphosphate aldolase variants in biological systems   总被引:15,自引:0,他引:15  
  相似文献   

14.
Under conditions used previously for demonstrating glycolytic oscillations in muscle extracts (pH 6.65, 0.1 to 0.5 mM ATP), phosphofructokinase from rat skeletal muscle is strongly activated by micromolar concentrations of fructose diphosphate. The activation is dependent on the presence of AMP. Activation by fructose diphosphate and AMP, and inhibition by ATP, is primarily due to large changes in the apparent affinity of the enzyme for the substrate fructose 6-phosphate. These control properties can account for the generation of glycolytic oscillations. The enzyme was also studied under conditions approximating the metabolite contents of skeletal muscle in vivo (pH 7.0, 10mM ATP, 0.1 mM fructose 6-phosphate). Under these more inhibitory conditions, phosphofructokinase is strongly activated by low concentrations of fructose diphosphate, with half-maximal activation at about 10 muM. Citrate is a potent inhibitor at physiological concentrations, whereas AMP is a strong activator. Both AMP and citrate affect the maximum velocity and have little effect on affinity of the enzyme for fructose diphosphate.  相似文献   

15.
16.
17.
18.
The biological mechanisms underlying decline in muscle power and fatigue with age are not completely understood. The contribution of alterations in the excitation-calcium release coupling in single muscle fibers was explored in this work. Single muscle fibers were voltage-clamped using the double Vaseline gap technique. The samples were obtained by needle biopsy of the vastus lateralis (quadriceps) from 9 young (25–35 years; 25.9 ± 9.1; 5 female and 4 male) and 11 old subjects (65–75 years; 70.5 ± 2.3; 6 f, 5 m). Data were obtained from 36 and 39 fibers from young and old subjects, respectively. Subjects included in this study had similar physical activity. Denervated and slow-twitch muscle fibers were excluded from this study. A significant reduction of maximum charge movement (Qmax) and DHP-sensitive Ca current were recorded in muscle fibers from the 65–75 group. Qmax values were 7.6 ± 0.9 and 3.2 ± 0.3 nC/F for young and old muscle fibers, respectively (P < 0.01). No evidences of charge inactivation or interconversion (charge 1 to charge 2) were found. The peak Ca current was (–)4.7 ± 0.08 and (–)2.15 ± 0.11 A/F for young and old fibers, respectively (P < 0.01). The peak calcium transient studied with mag-fura-2 (400 m) was 6.3 ± 0.4 m and 4.2 ± 0.3 m for young and old muscle fibers, respectively. Caffeine (0.5 mm) induced potentiation of the peak calcium transient in both groups. The decrease in the voltage-/ Ca-dependent Ca release ratio in old fibers (0.18 ± 0.02) compared to young fibers (0.47 ± 0.03) (P < 0.01), was recorded in the absence of sarcoplasmic reticulum calcium depletion. These data support a significant reduction of the amount of Ca available for triggering mechanical responses in aged skeletal muscle and, the reduction of Ca release is due to DHPR-ryanodine receptor uncoupling in fast-twitch fibers. These alterations can account, at least partially for the skeletal muscle function impairment associated with aging.This work was supported by Grant-in-Aid from the American Heart Association (National) and Muscular Dystrophy Association, and National Institutes of Health (2-P60AG18484-06)  相似文献   

19.
Fructose diphosphate aldolase of Mycobacterium smegmatis is found to be a class I type aldolase and possesses functional similarities with rabbit muscle aldolase with respect to the amino acid residues at the catalytic site. The presence of a lysine residue at the active site is indicated by the formation of a Schiff-base with the substrate. The lower degree of inactivation compared to rabbit muscle aldolase on treatment with carboxypeptidase-A suggests the absence of an essential terminal tyrosine residue. Participation of histidine residues in enzyme catalysis is suggested by the photoinactivation of the enzyme in presence of methylene blue. Finally, thiol groups do not seem to have a direct role in catalysis.  相似文献   

20.
In the present studies we investigated the abilities of fructose diphosphate aldolase subunits derived from diverse biological sources to form stable heterotetramers with each other in vitro. Aldolase C subunits isolated from chicken brain readily "hybridized" with aldolase subunits derived from lobster muscle and wheat germ following reversible acid dissociation of mixtures of these enzymes; however, appreciable amounts of stable heterotetramers containing chicken C subunits and aldolase subunits isolated from two other invertebrates (Ascaris and squid) were not produced under the same conditions. In contrast to the situation with chicken C subunits, aldolase B subunits isolated from rat liver did not "hybridize" appreciably with lobster muscle or wheat germ aldolase subunits. The present observations are not consistent with the hypothesis that the abilities of different aldolase subunit types to form heterotetramers in vitro is governed solely by the evolutionary relationships which exist between the organisms from which the enzymes are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号