首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
To study various aspects of GABAergic metabolism in an easily accessible system, dissociated cells from postnatal rat cerebral cortex were cultured in a serum-based medium and characterized morphologically and biochemically. The majority (70–90%) of the neurons were GABAergic as determined by three double-labeling procedures. The specific activity of glutamine synthetase in the cultures was 4–5% of the levels in rat astrocyte cultures and intact rat brain, indicating that glia were a minor component. The developmental increase of GABA levels preceded the increase of GAD activity in both immunocytochemical and biochemical experiments. GABA turnover rates also increased with culture age and were 20–30% of GAD activity. Four anti-GAD antibodies, which recognize GAD subunits with differing molecular masses to varying degrees, were used to stain cultured neurons and make immunoblots. Immunoblots showed that the neurons contained two major subunits of GAD which differed in mass by 2 kDa. All four antibodies immunostained both neuronal perikarya and neurites but one antibody, which on the immunoblots predominantly labeled the GAD protein with the lower molecular weight, showed a somewhat more pronounced punctate staining, possibly indicating a principal localization to neurites.  相似文献   

2.
In the present study, we investigated changes in glutamate decarboxylase 65 (GAD65) and GAD67 immunoreactivity and protein levels in the main olfactory bulb (MOB) after 5 min of transient forebrain ischemia in gerbils. GAD65 immunoreactivity in the sham-operated group was shown in neurons and neuropil except for the somata of granule cells. GAD65 immunoreactivity was increased in neurons in the external plexiform layer 60 days after ischemia, and in mitral cells 30 and 60 days after ischemia. GAD67 immunoreactivity in the sham-operated group was shown in periglomerular cells, neuron in the external plexiform layer and granule cells with neuropil. GAD67 immunoreactivity in periglomerular cells was increased 10, 45 and 60 days after ischemia. GAD67 immunoreactivity in neurons in the external plexiform layer was increased 10 and 15 days after ischemia. Mitral cells showed strong GAD67 immunoreactivity 10 days after ischemia. However, GAD67 immunoreactivity in the granule cells was not changed with time after ischemia. In Western blot analysis for GAD65 and GAD67 protein levels in the ischemic gerbil MOB, GAD65 level was not changed after ischemia; GAD67 level was increased 10 days after ischemia. These results suggest that transient ischemia causes changes in GAD65 and GAD67 immunoreactivity in the gerbil MOB, and this change may induce a malfunction in olfaction after an ischemic insult. Ki-Yeon Yoo and In Koo Hwang equally contributed to this article.  相似文献   

3.
Background aimsRecent advances in stem cell research have raised the possibility of stem cells repairing or replacing retinal photoreceptor cells that are either dysfunctional or lost in many retinal diseases. Various types of stem cells have been used to replace retinal photoreceptor cells. Recently, peripheral blood stem cells, a small proportion of pluripotent stem cells, have been reported to mainly exist in the peripheral blood mononuclear cells (PBMCs).MethodsIn this study, the effects of pre-induced adult human PBMCs (hPBMCs) on the degenerative retinas of rd1 mice were investigated. Freshly isolated adult hPBMCs were pre-induced with the use of the conditioned medium of rat retinas for 4 days and were then labeled with chloromethyl-benzamidodialkylcarbocyanine (CM-DiI) and then transplanted into the subretinal space of the right eye of rd1 mice through a trans-scleral approach. The right eyes were collected 30 days after transplantation. The survival and migration of the transplanted cells in host retinas were investigated by whole-mount retinas, retinal frozen sections and immunofluorescent staining.ResultsAfter subretinal transplantation, pre-induced hPBMCs were able to survive and widely migrate into the retinas of rd1 mice. A few CM-DiI–labeled cells migrated into the inner nuclear layer and the retinal ganglion cell layer. Some transplanted cells in the subretinal space of rd1 host mice expressed the human photoreceptor–specific marker rhodopsin.ConclusionsThis study suggests that pre-induced hPBMCs may be a potential cell source of cell replacement therapy for retinal degenerative diseases.  相似文献   

4.
Abstract: Five inhibitors of the GABA degrading enzyme GABA-aminotransferase (GABA-T), viz., gabaculine, γ-acetylenic GABA, γ-vinyl GABA, ethanolamine O -sulphate, and aminooxyacetic acid, as well as GABA itself and the antiepileptic sodium vdproate were administered to mice in doses equieffective to raise the electroconvulsive threshold by 30 V. The animals were killed at the time of maximal anticonvulsant effect of the respective drugs and GABA, GABA-T and glutamate decarboxylase (GAD) were determined in whole brain and synaptosomes, respectively. The synaptosomal fraction was prepared from brain by conventional ultracentrifugation procedures. All drugs studied brought about significant increases in both whole brain and synaptosomal GABA concentrations, and, except GABA itself, inhibited the activity of GABA-T. Furthermore, all drugs, except GABA and γ-acetylenic GABA, activated GAD in the synaptosomal fraction. This was most pronounced with ethanolamine O -sulphate, which induced a twofold activation of this enzyme but exerted only a weak inhibitory effect on GABA-T. The results suggest that activation of GAD is an important factor in the mechanism by which several inhibitors of GABA-T and also valproate increase GABA concentrations in nerve terminals, at least in the relatively non-toxic doses as used in this study.  相似文献   

5.
Abstract: Regional distribution of endogenous γ- aminobutyric acid (GABA), its synthesizing enzyme, glutamic acid decarboxylase (GAD), and metabolic enzyme, GABA transaminase (GABA-T), were determined in the intestinal tract of guinea pigs and cats and the findings compared with the number of ganglion cells in Auerbach's plexus. There were positive correlations among the GABA contents and the numbers of neural cells of the plexus. The precise localization of GABA and GAD in individual layers (mucosa, circular and longitudinal muscles, and Auerbach's plexus) in the human and cat colon was also determined. The endogenous GABA contents and GAD activity were the highest in Auerbach's plexus in tissues of both species. These results indicate that GABA is synthesized and localized in Auerbach's plexus and probably plays a significant role in the enteric nervous system.  相似文献   

6.
Gamma‐aminobutyric acid (GABA) is a non‐protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA‐transaminase, GABA‐T), we attempted seed‐specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB‐1) or rice embryo globulin promoters (REG) and GABA‐T‐based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T1 and T2 generations of rice lines displayed high GABA concentrations (2–100 mg/100 g grain). In analyses of two selected lines from the T3 generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA‐T expression was relatively weak. In these two lines both with two T‐DNA copies, their starch, amylose, and protein levels were slightly lower than non‐transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75–350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts.  相似文献   

7.
Crayfish CNS fibers were isolated in vivo from their cell bodies, from cellular connections in the CNS, and from peripheral sensory and effector cells. The glutamic acid decarboxylase (GAD) activity of the experimental tissues was about half of that of the sham-operated and unoperated control tissues by two weeks after surgery and remained at about that level during the ensuing six weeks. During that time, there was no significant behavioral, electrophysiological, or histological evidence of regeneration of nerve fibers across the lesion sites. The crush-isolated connectives possessed many intact axon profiles and nonneuronal cell nuclei. The long-term persistence of GAD activity in the injured CNS tissue may reflect the involvement of glial cells in maintaining neurotransmitter levels.Dedicated to Dr. E. M. Shooter and Dr. S. Varon as part of a special issue (Neurochemical Research, Vol. 12, No. 10, 1987).  相似文献   

8.
The central distribution of QHCl-elicited Fos-like immunoreactivity (FLI) suggests the location of a brain stem circuit that controls the oral rejection response. Although many species display an oral rejection response to bitter stimuli, the distribution of FLI associated with this response has been investigated only in rats. Fos data are minimal for the mouse, a species of increasing importance, due to its use in molecular and transgenic studies and taste-evoked oromotor responses are also only incompletely described in these rodents. We investigated these questions in FVB/NJ mice and a related transgenic strain (FVB-Tg(GadGFP)4507) that expresses green fluorescent protein in a subset of GAD1-containing neurons. QHCl, sucrose, or water delivered through intraoral cannulae yielded behavioral profiles that clearly differentiated QHCl from sucrose. Similar to rat, the number of neurons expressing FLI in the medial third of the solitary nucleus was elevated following QHCl compared with the other stimuli. In mice expressing green fluorescent protein, there was a pronounced distribution of GABAergic neurons in the ventral half of the solitary nucleus. Approximately 15% of solitary neurons expressing Fos were GABAergic, but this proportion did not differ according to stimulus.  相似文献   

9.
10.
Summary The localisation of GABA immunoreactive neurones in retinas of a variety of animals was examined. Immunoreactivity was associated with specific populations of amacrine neurones in all species examined, viz. rat, rabbit, goldfish, frog, pigeon and guinea-pig. All species, with the exception of the frog, possessed immunoreactive perikarya in their retinal ganglion cell layers. These perikarya are probably displaced amacrine cells because GABA immunoreactivity was absent from the optic nerves and destruction of the rat optic nerve did not result in degeneration of these cells. GABA immunoreactivity was also associated with the outer plexiform layers of all the retinas studied; these processes are derived from GABA-positive horizontal cells in rat, rabbit, frog, pigeon and goldfish retinas, from bipolar-like cells in the frog, and probably from interplexiform cells in the guinea-pig retina.The development of GABA-positive neurones in the rabbit retina was also analysed. Immunoreactivity was clearly associated with subpopulations of amacrine and horizontal cells on the second postnatal day. The immunoreactivity at this stage is strong, and fairly well developed processes are apparent. The intensity of the immunoreactivity increases with development in the case of the amacrine cells. The immunoreactive neurones appear fully developed at about the 8th postnatal day, although the immunoreactivity in the inner plexiform layer becomes more dispersed as development proceeds. The immunoreactive horizontal cells become less apparent as development proceeds, but they can still be seen in the adult retina.The GABA immunoreactive cells in rabbit retinas can be maintained in culture. Cultures of retinal cells derived from 2-day-old animals can be maintained for up to 20 days and show the presence of GABA-positive cells at all stages. In one-day-old cultures the GABA immunoreactive cells lacked processes but within three days had clearly defined processes. After maintenance for 10 days a meshwork of GABA-positive fibres could also be seen in the cultures.  相似文献   

11.
Childhood absence epilepsy (CAE) is a well-defined generalized epilepsy syndrome clinically characterized by frequent absence seizures. The aim of this study was to assess the activity of GABA transaminase (GABA-T) and the kinetic parameters of GABA uptake in platelets from patients with CAE. We studied 13 patients with CAE and eight sex- and age-matched controls. The mean activity of GABA-T was lower in patients with CAE than in controls (1.22+/-0.05 vs. 1.75+/-0.10 micromol/min/kg protein). The capacity of GABA uptake into the platelets was higher in patients using valproate (0.66+/-0.09 micromol/min/kg protein), but not in those using ethosuximide (0.34+/-0.05 micromol/min/kg protein), when compared to controls (0.26+/-0.06 micromol/min/kg protein). The affinity of the transporters was not altered. The observed peripheral alterations may indicate impaired function of brain GABAergic systems in children with absence epilepsy.  相似文献   

12.
The primary mechanism by which the action of synaptically released GABA is thought to be terminated is by re-uptake into neurones and glial cells, and the pharmacological inhibition of this uptake may be beneficial in conditions where decreased GABAergic transmission has been implicated, such as epilepsy. We have compared the effects of two of these uptake inhibitors, tiagabine and NNC-711, on extracellular GABA levels in the thalamus of the rat, after both systemic and local administration. Both compounds produced dose-dependent increases in GABA concentration irrespective of the route of administration, but the concentrations required to produce increased extracellular GABA levels were considerably higher than those known to be effective for anticonvulsant purposes. These data suggest that, initially at least, alternative GABA transporters, not susceptible to inhibition by the compounds used, may still be able to remove synaptically released GABA from the extracellular space. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

13.
This study demonstrates that virtually homogenous cultures of mouse cerebral neurons, obtained from 15-day-old embryos, differentiate at least as well as cultures which in addition contain astrocytes. This was indicated by glutamate decarboxylase activity which within 2 weeks rose from a negligible value to twice the level in the adult mouse cerebral cortex, and by a gamma-aminobutyric acid (GABA) uptake rate which quadrupled during the second week in culture and reached higher values than in brain slices. Within the same period, the GABA content increased four to five times to 75 nmol/mg protein, and a potassium-induced increase in [14C]GABA efflux became apparent. Although the development was faster than in vivo, optimum differentiation required maintenance of the cultures beyond the age of 1 week. Uptake and release rates for glutamate and glutamine underwent much less developmental alteration. At no time was there any potassium-induced release of radioactivity after exposure to [14C]glutamate, and the glutamate uptake was only slightly increased during the period of GABAergic development. This indicates that exogenous glutamate is not an important GABA precursor. Similarly, glutamine uptake was unaltered between days 7 and 14, although a small potassium-induced release of radioactivity after loading with glutamine suggests a partial conversion to GABA.  相似文献   

14.
15.
A gene encoding glutamate decarboxylase A (GadA) from Lactobacillus brevis BH2 was expressed in a His-tagged form in Escherichia coli cells, and recombinant protein exists as a homodimer consisting of identical subunits of 53?kDa. GadA was absolutely dependent on the ammonium sulfate concentration for catalytic activity and secondary structure formation. GadA was immobilized on the metal affinity resin with an immobilization yield of 95.8%. The pH optima of the immobilized enzyme were identical with those of the free enzyme. However, the optimum temperature for immobilized enzyme was 5?°C higher than that for the free enzyme. The immobilized GadA retained its relative activity of 41% after 30 reuses of reaction within 30?days and exhibited a half-life of 19 cycles within 19?days. A packed-bed bioreactor with immobilized GadA showed a maximum yield of 97.8% GABA from 50?mM l-glutamate in a flow-through system under conditions of pH 4.0 and 55?°C.  相似文献   

16.
The contents of glutamate and GABA, as well as aspartate, glycine, and alanine, were examined in the cerebellar vermis and hemispheres of normal and Purkinje cell degeneration (pcd) mutant mice at 6, 9, and 12 months of age. Relative to normal values, the content of glutamate was approximately 50% lower in the vermis for the 3 age groups. In the hemispheres, the content of glutamate was also lower than control values and showed a progressive loss from 30 to 47% with age. On the other hand, in the case of GABA in the vermis, the level was 39% lower in the pcd mutant at 6 months of age but no different from control values at 12 months. However, relative to data for normal mice, the content of GABA in the hemispheres was consistently lower (20%) for all age groups. The level of aspartate was approximately 60% lower in the cerebellar vermis and 45 to 55% lower in the hemispheres of the mutant with respect to control data for all three age groups. Likewise, alanine showed a reduced content in the hemispheres (36–46%) and vermis (24%) in the mutant relative to normal values at 6, 9, and 12 months of age. On the other hand, the level of glycine was 43–64% higher in the vermis and 77–100% greater in the hemispheres of the mutant than in the control group. The higher values for glycine were observed at the two oldest ages. In conclusions, the data are consistent with the idea that glutamate and GABA are present in high concentrations in granule and Purkinje cells, respectively, and provide additional support for a transmitter function for both amino acids in the cerebellum.  相似文献   

17.
The 65 kDa human isoform of glutamate decarboxylase, GAD65, plays a central role in neurotransmission in higher vertebrates and is a typical autoantigen in several human autoimmune diseases, such as insulin-dependent diabetes mellitus (IDDM), Stiff-man syndrome and autoimmune polyendocrine syndrome type I. In autoimmune diabetes, an attack of inflammatory cells to endocrine pancreatic beta-cells leads to their complete destruction, eventually resulting in the inability to produce sufficient insulin for the body's requirements. Even though the etiology of beta-cell destruction is still a matter of debate, the role and antigenic potency of GAD65 are widely recognized. Herein a model of GAD65 is presented, which is based on the recently solved crystal structures of mammalian DOPA decarboxylase and of bacterial glutamate decarboxylase. The model provides for the first time a detailed and accurate structure of the GAD65 subunit (all three domains) and of its dimeric quaternary assembly. It reveals the structural basis for specific antibody recognition to GAD65 as opposed to GAD67, the other human isoform, which shares 81% sequence similarity with GAD65 and is much less antigenic. Literature data on monoclonal antibody binding are perfectly consistent with the detailed features of the model, which allows explanation of several findings on GAD65 immunogenicity. Importantly, by analyzing the active site, we identified the residues most likely involved in catalysis and substrate recognition, paving the way for rational mutagenesis studies of the GAD65 reaction mechanism, specificity and inhibition.  相似文献   

18.
 Insulin-dependent diabetes mellitus (IDDM) develops in nonobese diabetic (NOD) mice through the destruction of the B cells in pancreatic Langerhans islets by islet autoantigen-specific T cells. The islet autoantigen glutamic acid decarboxylase 65 (GAD65) is thought to be a major target autoantigen in IDDM. In the present report, we established GAD65-specific T-cell clones using overlapping peptides that cover the amino acid sequences of mouse GAD65. T-cell epitopes of GAD65 were characterized by proliferation and binding assays using various analogue peptides and wild-type or mutant I-Ag7 transfectants. The efficacy of the peptide vaccine in IDDM was determined by administering T-cell epitope peptides to NOD mice and evaluating the histopathology of their insulitis. We obtained two types of T-cell clone, one specific for peptide p316–335 and another specific for p531–545 of GAD65. The p531–545 site has already been identified, but we report the p316–335 site for the first time. T-cell clones recognized those peptides in the wild-type I-Ag7 but not in the mutant I-Ag7 in which the serine at position 57 of the β-chain was replaced by an aspartic acid. Both the p316–335 and p531–545 peptides bound weakly to I-Ag7. Some peptides with amino acid substitutions had antagonistic activity, and administration of a large amount of wild-type peptide reduced the severity of insulitis in NOD mice. Our results suggest that peptide vaccine therapy may be useful in autoimmune diseases, including IDDM. Received: 19 July 1999 / Revised: 4 January 2000  相似文献   

19.
The mode of inhibitory action of centrally administered SRIF on the efferent activity of autonomic nerves was investigated in the rat by assessing the SRIF-induced change in the activity of the superior laryngeal nerve with or without pretreatment with various drugs. After picrotoxin or bicuculline treatment, the inhibition of nerve activity by SRIF was abolished while reserpine and atropine failed to abolish the SRIF effect. The centrally administered GABA inhibited the activity of the superior laryngeal nerve and the cervical sympathetic trunk. However, SRIF did not affect the sympathetic trunk. Arterial blood pressure was increased by SRIF while GABA produced hypotension.

These data provide evidence for a GABAergic system as the mediator of SRIF action in the brain and for the selectivity of SRIF action on the particular intermediary GABAergic neurones.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号