共查询到20条相似文献,搜索用时 0 毫秒
1.
The energy cost and intensity of exercise performed at 0% grade were determined for walking at 2, 3, and 4 mph, running at 5, 6, and 7 mph, and walking at 2, 3, and 4 mph with ankle and/or hand weights. Subjects were young moderately trained males (4) and females (3). The energy cost per kilogram of body weight was similar between sexes, and data were combined for among-treatment comparisons. Intensity of effort and energy cost per minute and per mile were increased when weight was added during walking and were increased more with hand weights compared with ankle weights regardless of speed. The average increase in O2 uptake (ml X kg-1 X min-1 X 100 g-1 of added wt) was 0.8% for ankle, 1.3% for hand, and 0.9% for ankle and hand weights. Gross energy cost per mile during weighted walking (120-158 kcal/mile) was comparable to and in some cases exceeded that of running which was independent of speed (120-130 kcal/mile). During nonweighted walking, the energy cost (kcal/mile) was significantly greater at 4 mph compared with 2 and 3 mph which did not differ. The intensity of walking at 4 mph with ankle and hand weights was comparable to running at 5 mph. 相似文献
2.
P. Zamparo R. Perini C. Orizio M. Sacher G. Ferretti 《European journal of applied physiology and occupational physiology》1992,65(2):183-187
Oxygen uptake (VO2) at steady state, heart rate and perceived exertion were determined on nine subjects (six men and three women) while walking (3-7 km.h-1) or running (7-14 km.h-1) on sand or on a firm surface. The women performed the walking tests only. The energy cost of locomotion per unit of distance (C) was then calculated from the ratio of VO2 to speed and expressed in J.kg-1.m-1 assuming an energy equivalent of 20.9 J.ml O2-1. At the highest speeds C was adjusted for the measured lactate contribution (which ranged from approximately 2% to approximately 11% of the total). It was found that, when walking on sand, C increased linearly with speed from 3.1 J.kg-1.m-1 at 3 km.h-1 to 5.5 J.kg-1.m-1 at 7 km.h-1, whereas on a firm surface C attained a minimum of 2.3 J.kg-1.m-1 at 4.5 km.h-1 being greater at lower or higher speeds. On average, when walking at speeds greater than 3 km.h-1, C was about 1.8 times greater on sand than on compact terrain. When running on sand C was approximately independent of the speed, amounting to 5.3 J.kg-1.m-1, i.e. about 1.2 times greater than on compact terrain. These findings could be attributed to a reduced recovery of potential and kinetic energy at each stride when walking on sand (approximately 45% to be compared to approximately 65% on a firm surface) and to a reduced recovery of elastic energy when running on sand. 相似文献
3.
Anthony J. Blazevich Jared R. Fletcher 《Biological reviews of the Cambridge Philosophical Society》2023,98(6):2210-2225
Elastic strain energy that is stored and released from long, distal tendons such as the Achilles during locomotion allows for muscle power amplification as well as for reduction of the locomotor energy cost: as distal tendons perform mechanical work during recoil, plantar flexor muscle fibres can work over smaller length ranges, at slower shortening speeds, and at lower activation levels. Scant evidence exists that long distal tendons evolved in humans (or were retained from our more distant Hominoidea ancestors) primarily to allow high muscle–tendon power outputs, and indeed we remain relatively powerless compared to many other species. Instead, the majority of evidence suggests that such tendons evolved to reduce total locomotor energy cost. However, numerous additional, often unrecognised, advantages of long tendons may speculatively be of greater evolutionary advantage, including the reduced limb inertia afforded by shorter and lighter muscles (reducing proximal muscle force requirement), reduced energy dissipation during the foot–ground collisions, capacity to store and reuse the muscle work done to dampen the vibrations triggered by foot–ground collisions, reduced muscle heat production (and thus core temperature), and attenuation of work-induced muscle damage. Cumulatively, these effects should reduce both neuromotor fatigue and sense of locomotor effort, allowing humans to choose to move at faster speeds for longer. As these benefits are greater at faster locomotor speeds, they are consistent with the hypothesis that running gaits used by our ancestors may have exerted substantial evolutionary pressure on Achilles tendon length. The long Achilles tendon may therefore be a singular adaptation that provided numerous physiological, biomechanical, and psychological benefits and thus influenced behaviour across multiple tasks, both including and additional to locomotion. While energy cost may be a variable of interest in locomotor studies, future research should consider the broader range of factors influencing our movement capacity, including our decision to move over given distances at specific speeds, in order to understand more fully the effects of Achilles tendon function as well as changes in this function in response to physical activity, inactivity, disuse and disease, on movement performance. 相似文献
4.
Koteja P Swallow JG Carter PA Garland T 《Physiological and biochemical zoology : PBZ》1999,72(2):238-249
Laboratory house mice (Mus domesticus) that had experienced 10 generations of artificial selection for high levels of voluntary wheel running ran about 70% more total revolutions per day than did mice from random-bred control lines. The difference resulted primarily from increased average velocities rather than from increased time spent running. Within all eight lines (four selected, four control), females ran more than males. Average daily running distances ranged from 4.4 km in control males to 11.6 km in selected females. Whole-animal food consumption was statistically indistinguishable in the selected and control lines. However, mice from selected lines averaged approximately 10% smaller in body mass, and mass-adjusted food consumption was 4% higher in selected lines than in controls. The incremental cost of locomotion (grams food/revolution), computed as the partial regression slope of food consumption on revolutions run per day, did not differ between selected and control mice. On a 24-h basis, the total incremental cost of running (covering a distance) amounted to only 4.4% of food consumption in the control lines and 7.5% in the selected ones. However, the daily incremental cost of time active is higher (15.4% and 13.1% of total food consumption in selected and control lines, respectively). If wheel running in the selected lines continues to increase mainly by increases in velocity, then constraints related to energy acquisition are unlikely to be an important factor limiting further selective gain. More generally, our results suggest that, in small mammals, a substantial evolutionary increase in daily movement distances can be achieved by increasing running speed, without remarkable increases in total energy expenditure. 相似文献
5.
Alberto E Minetti Christian Moia Giulio S Roi Davide Susta Guido Ferretti 《Journal of applied physiology》2002,93(3):1039-1046
The costs of walking (Cw) and running (Cr) were measured on 10 runners on a treadmill inclined between -0.45 to +0.45 at different speeds. The minimum Cw was 1.64 +/- 0.50 J. kg(-1). m(-1) at a 1.0 +/- 0.3 m/s speed on the level. It increased on positive slopes, attained 17.33 +/- 1.11 J. kg(-1). m(-1) at +0.45, and was reduced to 0.81 +/- 0.37 J. kg(-1). m(-1) at -0.10. At steeper slopes, it increased to reach 3.46 +/- 0.95 J. kg(-1). m(-1) at -0.45. Cr was 3.40 +/- 0.24 J. kg(-1). m(-1) on the level, independent of speed. It increased on positive slopes, attained 18.93 +/- 1.74 J. kg(-1). m(-1) at +0.45, and was reduced to 1.73 +/- 0.36 J. kg(-1). m(-1) at -0.20. At steeper slopes, it increased to reach 3.92 +/- 0.81 J. kg(-1). m(-1) at -0.45. The mechanical efficiencies of walking and running above +0.15 and below -0.15 attained those of concentric and eccentric muscular contraction, respectively. The optimum gradients for mountain paths approximated 0.20-0.30 for both gaits. Downhill, Cr was some 40% lower than reported in the literature for sedentary subjects. The estimated maximum running speeds on positive gradients corresponded to those adopted in uphill races; on negative gradients they were well above those attained in downhill competitions. 相似文献
6.
7.
Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant 总被引:3,自引:0,他引:3
Inverted pendulum models of walking predict that little muscle work is required for the exchange of body potential and kinetic energy in single-limb support. External power during walking (product of the measured ground reaction force and body center-of-mass (COM) velocity) is often analyzed to deduce net work output or mechanical energetic cost by muscles. Based on external power analyses and inverted pendulum theory, it has been suggested that a primary mechanical energetic cost may be associated with the mechanical work required to redirect the COM motion at the step-to-step transition. However, these models do not capture the multi-muscle, multi-segmental properties of walking, co-excitation of muscles to coordinate segmental energetic flow, and simultaneous production of positive and negative muscle work. In this study, a muscle-actuated forward dynamic simulation of walking was used to assess whether: (1). potential and kinetic energy of the body are exchanged with little muscle work; (2). external mechanical power can estimate the mechanical energetic cost for muscles; and (3.) the net work output and the mechanical energetic cost for muscles occurs mostly in double support. We found that the net work output by muscles cannot be estimated from external power and was the highest when the COM moved upward in early single-limb support even though kinetic and potential energy were exchanged, and muscle mechanical (and most likely metabolic) energetic cost is dominated not only by the need to redirect the COM in double support but also by the need to raise the COM in single support. 相似文献
8.
BACKGROUND: The impact force in heel-toe running is an input signal into the body that initiates vibrations of the soft tissue compartments of the leg. These vibrations are heavily damped and the paradigm of muscle tuning suggests the body adapts to different input signals to minimize these vibrations. The objectives of the present study were to investigate the implications of not tuning a muscle properly for a landing with a frequency close to the resonance frequency of a soft tissue compartment and to look at the effect of an unexpected surface change on the subsequent step of running. METHOD: Thirteen male runners were recruited and performed heel-toe running over two surface conditions. The peak accelerations and biodynamic responses of the soft tissue compartments of the leg along with the EMG activity of related muscles were determined for expected soft, unexpected hard and expected hard landings. RESULTS AND CONCLUSIONS: For the unexpected hard landing there was a change in the input frequency of the impact force, shifting it closer to the resonance frequency of the soft tissue compartments. For the unexpected landing there was no muscle adaptation, as subjects did not know the running surface was going to change. In support of the muscle-tuning concept an increase in the soft tissue acceleration did occur. This increase was greater when the proximity of the input signal frequency was closer to the resonance frequency of the soft tissue compartment. Following the unexpected change in the input signal a change in pre-contact muscle activity to minimize soft tissue compartment vibrations was not found. This suggests if muscle tuning does occur it is not a continuous feedback response that occurs with every small change in the landing surface properties. In previous studies with significant adaptation periods to new input signals significant correlations between the changes in the input signal frequency and the EMG intensity have been shown, however, changes in soft tissue accelerations have not been found. The results of the present study showed that changes in these soft tissue accelerations can occur in response to a resonance frequency input signal when a muscle reaction has not happened. 相似文献
9.
10.
Ultrasound imaging has recently been used to distinguish the length changes of muscle fascicles from those of the whole muscle tendon complex during real life movements. The complicated three-dimensional architecture of pennate muscles can however cause heterogeneity in the length changes along the length of a muscle. Here we use ultrasonography to examine muscle fascicle length and pennation angle changes at proximal, distal and midbelly sites of the human gastrocnemius medialis (GM) muscle during walking (4.5 km/h) and running (7.5 km/h) on a treadmill. The results of this study have shown that muscle fascicles perform the same actions along the length of the human GM muscle during locomotion. However the distal fascicles tend to shorten more and act at greater pennation angles than the more proximal fascicles. Muscle fascicles acted relatively isometrically during the stance phase during walking, however during running the fascicles shortened throughout the stance phase, which corresponded to an increase in the strain of the series elastic elements (SEEs) (consisting of the Achilles tendon and aponeurosis). Measurement of the fascicle length changes at the midbelly level provided a good approximation of the average fascicle length changes across the length of the muscle. The compliance of the SEE allows the muscle fascicles to shorten at a much slower speed, more concomitant with their optimal speed for maximal power output and efficiency, with high velocity shortening during take off in both walking and running achieved by recoil of the SEE. 相似文献
11.
Abe D Fukuoka Y Muraki S Yasukouchi A Sakaguchi Y Niihata S 《Journal of physiological anthropology》2011,30(4):153-160
This study quantified the interaction of electromyography (EMG) obtained from the vastus lateralis and metabolic energy cost of running (C(r); mL·[mass+load](-1)·meter(-1)), an index of running economy, during submaximal treadmill running. Experiments were conducted with and without load on the back on a motor-driven treadmill on the downhill, level and uphill slopes. The obtained EMG was full-wave rectified and integrated (iEMG). The iEMG was divided into eccentric (ECC) and concentric (CON) phases with a foot sensor and a knee-joint goniometer. The ratio of ECC to CON (ECC/CON ratio) was regarded as the muscle elastic capacity during running on each slope. The C(r) was determined as the ratio of the 2-min steady-state VO(2) to the running speed. We found a significant decrease in the C(r) when carrying the load at all slopes. The ECC/CON ratio was significantly higher in the load condition at the downhill and level slopes, but not at the uphill slope. A significant gradient difference was observed in the C(r) (downuphill). Thus, an alteration of Cr by the gradient and load was almost consistent with that of the ECC/CON ratio. The ECC/CON ratio, but not the rotative torque (T) functioning around the center of body mass, significantly correlated with C(r) (r=-0.41, p<0.05). These results indicated that the ECC/CON ratio, rather than T, contributed to one of the energy-saving mechanisms during running with load. 相似文献
12.
Previous studies have suggested that generating vertical force on the ground to support body weight (BWt) is the major determinant of the metabolic cost of running. Because horizontal forces exerted on the ground are often an order of magnitude smaller than vertical forces, some have reasoned that they have negligible cost. Using applied horizontal forces (AHF; negative is impeding, positive is aiding) equal to -6, -3, 0, +3, +6, +9, +12, and +15% of BWt, we estimated the cost of generating horizontal forces while subjects were running at 3.3 m/s. We measured rates of oxygen consumption (VO2) for eight subjects. We then used a force-measuring treadmill to measure ground reaction forces from another eight subjects. With an AHF of -6% BWt, VO2 increased 30% compared with normal running, presumably because of the extra work involved. With an AHF of +15% BWt, the subjects exerted approximately 70% less propulsive impulse and exhibited a 33% reduction in VO2. Our data suggest that generating horizontal propulsive forces constitutes more than one-third of the total metabolic cost of normal running. 相似文献
13.
Georges Dalleau Alain Belli Muriel Bourdin Jean-René Lacour 《European journal of applied physiology and occupational physiology》1998,77(3):257-263
During running, the behaviour of the support leg was studied by modelling the runner using an oscillating system composed
of a spring (the leg) and of a mass (the body mass). This model was applied to eight middle-distance runners running on a
level treadmill at a velocity corresponding to 90% of their maximal aerobic velocity [mean 5.10 (SD 0.33) m · s−1]. Their energy cost of running (C
r
), was determined from the measurement of O2 consumption. The work, the stiffness and the resonant frequency of both legs were computed from measurements performed with
a kinematic arm. The C
r
was significantly related to the stiffness (P < 0.05, r = −0.80) and the absolute difference between the resonant frequency and the step frequency (P < 0.05, r = 0.79) computed for the leg producing the highest positive work. Neither of these significant relationships were obtained
when analysing data from the other leg probably because of the work asymmetry observed between legs. It was concluded that
the spring-mass model is a good approach further to understand mechanisms underlying the interindividual differences in C
r
.
Accepted: 18 August 1997 相似文献
14.
Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study 总被引:1,自引:0,他引:1
Lansley KE Winyard PG Fulford J Vanhatalo A Bailey SJ Blackwell JR DiMenna FJ Gilchrist M Benjamin N Jones AM 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,110(3):591-600
Dietary supplementation with beetroot juice (BR) has been shown to reduce resting blood pressure and the O(2) cost of submaximal exercise and to increase tolerance to high-intensity cycling. We tested the hypothesis that the physiological effects of BR were consequent to its high NO(3)(-) content per se, and not the presence of other potentially bioactive compounds. We investigated changes in blood pressure, mitochondrial oxidative capacity (Q(max)), and physiological responses to walking and moderate- and severe-intensity running following dietary supplementation with BR and NO(3)(-)-depleted BR [placebo (PL)]. After control (nonsupplemented) tests, nine healthy, physically active male subjects were assigned in a randomized, double-blind, crossover design to receive BR (0.5 l/day, containing ~6.2 mmol of NO(3)(-)) and PL (0.5 l/day, containing ~0.003 mmol of NO(3)(-)) for 6 days. Subjects completed treadmill exercise tests on days 4 and 5 and knee-extension exercise tests for estimation of Q(max) (using (31)P-magnetic resonance spectroscopy) on day 6 of the supplementation periods. Relative to PL, BR elevated plasma NO(2)(-) concentration (183 ± 119 vs. 373 ± 211 nM, P < 0.05) and reduced systolic blood pressure (129 ± 9 vs. 124 ± 10 mmHg, P < 0.01). Q(max) was not different between PL and BR (0.93 ± 0.05 and 1.05 ± 0.22 mM/s, respectively). The O(2) cost of walking (0.87 ± 0.12 and 0.70 ± 0.10 l/min in PL and BR, respectively, P < 0.01), moderate-intensity running (2.26 ± 0.27 and 2.10 ± 0.28 l/min in PL and BR, respectively, P < 0.01), and severe-intensity running (end-exercise O(2) uptake = 3.77 ± 0.57 and 3.50 ± 0.62 l/min in PL and BL, respectively, P < 0.01) was reduced by BR, and time to exhaustion during severe-intensity running was increased by 15% (7.6 ± 1.5 and 8.7 ± 1.8 min in PL and BR, respectively, P < 0.01). In contrast, relative to control, PL supplementation did not alter plasma NO(2)(-) concentration, blood pressure, or the physiological responses to exercise. These results indicate that the positive effects of 6 days of BR supplementation on the physiological responses to exercise can be ascribed to the high NO(3)(-) content per se. 相似文献
15.
The energetic economy of running benefits from tendon and other tissues that store and return elastic energy, thus saving muscles from costly mechanical work. The classic “Spring-mass” computational model successfully explains the forces, displacements and mechanical power of running, as the outcome of dynamical interactions between the body center of mass and a purely elastic spring for the leg. However, the Spring-mass model does not include active muscles and cannot explain the metabolic energy cost of running, whether on level ground or on a slope. Here we add explicit actuation and dissipation to the Spring-mass model, and show how they explain substantial active (and thus costly) work during human running, and much of the associated energetic cost. Dissipation is modeled as modest energy losses (5% of total mechanical energy for running at 3 m s-1) from hysteresis and foot-ground collisions, that must be restored by active work each step. Even with substantial elastic energy return (59% of positive work, comparable to empirical observations), the active work could account for most of the metabolic cost of human running (about 68%, assuming human-like muscle efficiency). We also introduce a previously unappreciated energetic cost for rapid production of force, that helps explain the relatively smooth ground reaction forces of running, and why muscles might also actively perform negative work. With both work and rapid force costs, the model reproduces the energetics of human running at a range of speeds on level ground and on slopes. Although elastic return is key to energy savings, there are still losses that require restorative muscle work, which can cost substantial energy during running. 相似文献
16.
Masaki Ishikawa Paavo V Komi Michael J Grey Vesa Lepola Gert-Peter Bruggemann 《Journal of applied physiology》2005,99(2):603-608
The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action. 相似文献
17.
Daijiro Abe Kazumasa Yanagawa Kaoru Yamanobe Keiji Tamura 《European journal of applied physiology and occupational physiology》1998,77(4):320-325
The purpose of this study was to assess the validity of v
amax as an indicator of middle-distance running performance in sub-elite young runners, amax being defined as the quotient maximal oxygen uptake (V˙O
2max) divided by the net energy cost of running (C
r) on a treadmill at a submaximal running velocity (280 m · min−1). The V˙O
2max, ventilatory threshold, amax, and C
r were assessed in 39 young male sub-elite runners having only small variations in performance level. The relationship between
each variable and running performance (at 1500 m, 3000 m, and 5000 m) was evaluated. A trend toward a negative correlation
existed between C
r and performance although this was not significant. The V˙O
2max and amax were significantly related to performance. The amax accounted for around 50% of the variability in performance whereas other physiological variables selected in this study were
responsible, at best, for approximately 39%. The results presented in this study suggested that amax was a useful indicator of middle-distance running performance in sub-elite young runners with similar performance levels
as well as in top elite athletes.
Accepted: 19 August 1997 相似文献
18.
The human heel pad is considered an important structure for attenuation of the transient force caused by heel-strike. Although the mechanical properties of heel pads are relatively well understood, the mechanical energy (Etot) absorbed by the heel pad during the impact phase has never been documented directly because data on the effective foot mass (Meff) was previously unavailable during normal forward locomotion. In this study, we use the impulse-momentum method (IMM) for calculating Meff from moving subjects. Mass-spring-damper models were developed to evaluate errors and to examine the effects of pad property, upper body mass, and effective leg spring on Meff. We simultaneously collected ground reaction forces, pad deformation, and lower limb kinematics during impact phase of barefoot walking, running, and crouched walking. The latter was included to examine the effect of knee angle on Meff. The magnitude of Meff as a percentage of body mass (M(B)) varies with knee angle at impact and significantly differs among gaits: 6.3%M(B) in walking, 5.3%M(B) in running, and 3.7%M(B) in crouched walking. Our modeling results suggested that Meff is insensitive to heel pad resilience and effective leg stiffness. At the instant prior to heel strike, Etot ranges from 0.24 to 3.99 J. The combination of video and forceplate data used in this study allows analyses of Etot and Etot as a function of heel-strike kinematics during normal locomotion. Relationship between Meff and knee angle provides insights into how changes in posture moderate impact transients at different gaits. 相似文献
19.
20.
In human walking, the center of mass motion is similar to an inverted pendulum. Viewing double support as a transition from one inverted pendulum to the next, we hypothesized that the leading leg performs negative work to redirect the center of mass velocity, while simultaneously, the trailing leg performs positive work to replace the lost energy. To test this hypothesis, we developed a method to quantify the external mechanical work performed by each limb (individual limbs method). Traditional measures of external mechanical work use the sum of the ground reaction forces acting on the limbs (combined limbs method) allowing for the mathematical cancellation of simultaneous positive and negative work during multiple support periods. We expected to find that the traditional combined limbs method underestimates external mechanical work by a substantial amount. We used both methods to measure the external mechanical work performed by humans walking over a range of speeds. We found that during double support, the legs perform a substantial amount of positive and negative external work simultaneously. The combined limbs measures of positive and negative external work were approximately 33% less than those calculated using the individual limbs method. At all speeds, the trailing leg performs greater than 97% of the double support positive work while the leading leg performs greater than 94% of the double support negative work. 相似文献