首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In adult mammalian brains, neurogenesis persists in the subventricular zone of the lateral ventricles (SVZ) and the dentate gyrus (DG) of the hippocampus. Although evidence suggest that adult neurogenesis in these two regions is subjected to differential regulation, the underlying mechanism is unclear. Here, we show that the RNA-binding protein FXR2 specifically regulates DG neurogenesis by reducing the stability of Noggin mRNA. FXR2 deficiency leads to increased Noggin expression and subsequently reduced BMP signaling, which results in increased proliferation and altered fate specification of neural stem/progenitor cells in DG. In contrast, Noggin is not regulated by FXR2 in the SVZ, because Noggin expression is restricted to the ependymal cells of the lateral ventricles, where FXR2 is not expressed. Differential regulation of SVZ and DG stem cells by FXR2 may be a key component of the mechanism that governs the different neurogenic processes in these two adult germinal zones.  相似文献   

3.
Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.  相似文献   

4.
The dentate gyrus (DG) of the hippocampus is one of a few regions in the adult mammalian brain characterized by ongoing neurogenesis. Proliferation of neural precursors in the granule cell layer of the DG has been identified in pentylenetetrazol (PTZ) kindling epilepsy model, however, little is known about the molecular mechanism. We previously reported that the expression pattern of bone morphogenetic proteins-4 (BMP4) mRNA in the hippocampus was developmentally regulated and mainly localized in the DG of the adult. To explore the role of BMP4 in epileptic activity, we detected BMP4 expression in the DG during PTZ kindling process and explore its correlation with cell proliferation combined with bromodeoxyuridine (BrdU) labeling technique. We found that dynamic changes in BMP4 level and BrdU labeled cells dependent on the kindling stage of PTZ induced seizure-prone state. The number of BMP4 mRNA-positive cells and BrdU labeled cells reached the top level 1 day after PTZ kindled, then declined to base level 2 months later. Furthermore, there was a significant correlation between increased BMP4 mRNA expression and increased number of BrdU labeled cells. After effectively blocked expression of BMP4 with antisense oligodeoxynucleotides(ASODN), the BrdU labeled cells in the dentate gyrus subgranular zone(DG-SGZ) and hilus were significantly decreased 16d after the first PTZ injection and 1, 3, 7, 14d after kindled respectively. These findings suggest that increased proliferation in the DG of the hippocampus resulted from kindling epilepsy elicited by PTZ maybe be modulated by BMP4 over-expression.  相似文献   

5.
1. A recently recognized complication of uncontrolled diabetes mellitus is the encephalopathy involving, among other regions, the hippocampus. Since estrogens bring neuroprotection in cases of brain injury and degenerative diseases, we have studied if estradiol (E2) administration counteracts some hippocampal abnormalities of streptozotocin (STZ)-diabetic adult mice.2. We first report the ability of E2 to modulate neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ) of diabetic mice. Using bromodeoxyuridine (BrdU) to label newly generated cells, a strong reduction in cell proliferation was obtained in DG and SVZ of mice sacrificed 20 days after STZ administration. The reduction was completely relieved by 10 days of E2 pellet implantation, which increased 30-fold the circulating E2 levels.3. Diabetic mice also showed abnormal expression of astrocyte markers in hippocampus. Thus, increased number of GFAP+ cells, indicative of astrogliosis, and increased number of apolipoprotein-E (Apo-E)+ astrocytes, a marker of ongoing neuronal dysfunction, was found in stratum radiatum below the CA1 hippocampal subfield of diabetic mice. Both parameters were reverted to normal by the E2 regime that upregulated cell proliferation.4. The studies demonstrated that hippocampal neuropathology of uncontrolled diabetes is a reversible condition and sensitive to estrogen treatment. Studies in animal models may open up new venues for understanding the beneficial role of steroid hormones in diabetic encephalopathy.  相似文献   

6.
7.
We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG), but not undifferentiated neuronal progenitor cells (NPCs) from ventral subventricular zone (SVZ), results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2). NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control). By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+), whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+). At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative). Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78%) expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.  相似文献   

8.
5-Azacytidine (5AzC) induces neuronal apoptosis in rat and mouse fetuses. 5AzC also induces apoptosis in undifferentiated PC12 cells, and ribosomal protein L4 (rpL4) mRNA expression increases prior to apoptosis. To clarify the roles of rpL4 during neurogenesis, we first examined the distribution of rpL4 mRNA in the developing rat brain by in situ hybridization and RT-PCR, and compared the results to the distribution of TUNEL- or PCNA-positive cells. rpL4 mRNA expression was strong in the ventricular zone (VZ), subventricular zone (SVZ), cortical plate (CP), cerebral cortex, granule cell layer (GCL), pyramidal cell layer (Py) and external granular layer (EGL) during embryonic and early postnatal days, and it was remarkably weakened thereafter. A lot of PCNA-positive cells were observed in VZ, SVZ, and EGL during embryonic and early postnatal days, and such distribution of PCNA-positive cells was almost identical to rpL4 mRNA distribution. Only few TUNEL-positive cells were observed in VZ, SVZ, cerebral cortex, EGL, and hippocampus during embryonic and early postnatal days, and the regions with TUNEL-positive cells were not identical to rpL4 mRNA distribution. Next, the changes of rpL4 mRNA expression in the brain of 5AzC-treated rat fetuses were examined by in situ hybridization and RT-PCR. Apoptotic cells appeared at 9 to 24 hours after treatment (HAT). However, the rpL4 mRNA expression was unchanged during the apoptotic process. From the results, it is suggested that rpL4 would have certain roles in cell proliferation and differentiation during neurogenesis, but have no roles in 5AzC-induced apoptosis in the fetal brain.  相似文献   

9.
Progenitor cells in the dentate gyrus of hippocampus (DG) and the subventricular zone of lateral ventricles (SVZ) generate new neurons throughout the life of mammals. Cerebral ischemia increases this basal progenitor cell proliferation. The present study evaluated the time frame of proliferation, length of survival and the phenotypes of the new cells formed after transient middle cerebral artery occlusion (MCAO) in adult spontaneously hypertensive rats. Compared to sham controls, ischemic rats showed a significantly higher number of newly proliferated cells (as defined by BrdU immunostaining) in both the DG (by fourfold, p < 0.05) and the SVZ (by twofold, p < 0.05). DG showed increased proliferation only in the first week of reperfusion and 49% of the cells formed in this period survived to the end of third week. Whereas, SVZ showed a continuous proliferation up to 3 weeks after MCAO, but the cells formed survived for less than a week. In both DG and SVZ, at the end of the first week of reperfusion, majority of the BrdU-positive (BrdU+) cells were immature neurons (DCX positive). In the DG, 28% of the cells formed in the first week after MCAO mature into neurons (NeuN positive). The ischemic cortex and striatum showed several BrdU+ cells which were ED-1 positive microglia/macrophages. At 1 week of reperfusion, MCAO-induced progenitor cell proliferation in the ipsilateral DG was significantly increased by i.c.v. infusion of IGF-1 (by 127 +/- 14%, p < 0.05) and GDNF (by 91 +/- 5%, p < 0.05), compared to vehicle. In the growth factor treated rats subjected to transient MCAO, several BrdU+ cells formed in the first week survived up to the third week.  相似文献   

10.
Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during differentiation, but they generated normal percentages of neuronal cells. Neuronal fate commitment therefore appears to be controlled through a non-clock function of BMAL1. This study provides insight into how cell autonomous circadian clocks and clock genes regulate adult neural stem cells with implications for treating neurodegenerative disorders and impaired brain functions by manipulating neurogenesis.  相似文献   

11.
Oh S  Kim JI  Chung MW  Ho IK 《Neurochemical research》2000,25(12):1603-1611
The NMDA receptor has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of butorphanol on the modulation of NMDA receptor subunit NR1, NR2A, NR2B, and NR2C gene expression were investigated by using in situ hybridization technique. Continuous intracerebroventricular (i.c.v.) infusion with butorphanol (26 nmol/l/h) resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels. The level of NR1 mRNA was significantly decreased in the cerebral cortex, thalamus, and CA1 area of hippocampus in butorphanol tolerant and withdrawal (7 h after stopping the infusion) rats. The NR2A mRNA was significantly decreased in the CA1 and CA3 of hippocampus in tolerant rats and increased in the cerebral cortex and dentate gyrus in butorphanol withdrawal rats. NR2B subunit mRNA was decreased in the cerebral cortex, caudate putamen, thalamus, CA3 of hippocampus in butorphanol withdrawal rats. No changes of NR1, NR2A, NR2C subunit mRNA in the cerebellar granule cell layer were observed in either butorphanol tolerant or withdrawal rats. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased significantly in all brain regions except in the thalamus and hippocampus, at the 7 hr after stopping the butorphanol infusion. These results suggest that region-specific changes of NMDA receptor subunit mRNA (NR 1 and NR2) as well as NMDA receptor binding ([3H]MK-801) are involved in the development of tolerance to and withdrawal from butorphanol.  相似文献   

12.
13.
Using multiple 35S-labeled oligonucleotide probes concurrently, the type I insulin-like growth factor receptor (IGF-I-R) mRNA was demonstrated by Northern blot hybridization in newborn and adult rat brain as a single species of approximately 11 kilobases. The probes were used to localize IGF-I-R mRNA by in situ hybridization in slices of adult rat brain. The highest levels of IGF-I-R mRNA expression were found in the glomerular and mitral cell body layers of the olfactory bulb, the granule cell body layers of the dentate gyrus and cerebellum, the pyramidal cell body layers of the piriform cortex and Ammon's horn, and the choroid plexus. The lowest levels of IGF-I-R mRNA expression were found in white matter. At the cellular level, IGF-I-R mRNA was expressed by a variety of neurons, by epithelial cells of the choroid plexus, and by ependymal cells of the third ventricle. Of the neuron types studied, the highest levels of IGF-I-R mRNA were consistently found in perikarya of mitral and tufted cells in the olfactory bulb, in pyramidal cells of the piriform cortex and Ammon's horn, and in granule cells of the dentate gyrus. There was a close congruency between the distribution of IGF-I binding and IGF-I-R mRNA at the regional level. Neuropil layers in the cerebral cortex, olfactory bulb, hippocampus, and cerebellum contained a high level of IGF-I binding, whereas the adjacent cell body layers contained a high level of the IGF-I-R mRNA. We conclude that in these regions, IGF-I-R mRNA is synthesized in neuronal cell bodies, and the receptors are transported to axons and dendrites in adjacent synapse-rich layers, where appropriate IGF effects are achieved.  相似文献   

14.
Infection of neonatal rats with Borna disease virus results in a characteristic behavioral syndrome and apoptosis of subsets of neurons in the hippocampus, cerebellum, and cortex (neonatal Borna disease [NBD]). In the NBD rat hippocampus, dentate gyrus granule cells progressively degenerate. Apoptotic loss of granule cells in NBD is associated with accumulation of zinc in degenerating neurons and reduced zinc in granule cell mossy fibers. Excess zinc can trigger poly(ADP-ribose) polymerase 1 (PARP-1) activation, and PARP-1 activation can mediate neuronal death. Here, we evaluate hippocampal PARP-1 mRNA and protein expression levels, activation, and cleavage, as well as apoptosis-inducing factor (AIF) nuclear translocation and executioner caspase 3 activation, in NBD rats. PARP-1 mRNA and protein levels were increased in NBD hippocampi. PARP-1 expression and activity were increased in granule cell neurons and glia with enhanced ribosylation of proteins, including PARP-1 itself. In contrast, levels of poly(ADP-ribose) glycohydrolase mRNA were decreased in NBD hippocampi. PARP-1 cleavage and AIF expression were also increased in astrocytes in NBD hippocampi. Levels of activated caspase 3 protein were increased in NBD hippocampi and localized to nuclei, mossy fibers, and dendrites of granule cell neurons. These results implicate aberrant zinc homeostasis, PARP-1, and caspase 3 activation as contributing factors in hippocampal neurodegeneration in NBD.  相似文献   

15.
目的本实验应用大脑中动脉栓塞(MCAO)模型,观察bFGF对脑缺血再灌注损伤后海马及顶叶皮质中Wnt通路抑制因子Dickkopf-1(DKK-1)和Wnt通路中pCatenin的表达作用的影响,以探讨Wnt通路对缺血性脑损伤的作用机制,为临床治疗缺血性脑血管病提供实验依据。方法应用线栓法制作大鼠局灶性脑缺血再灌注模型,大脑中动脉阻塞1h再灌注损伤24h,采用免疫组织化学SABC法及RT-PCR法检测海马及顶叶皮质CA1区神经元β-Catenin和DKK-1mRNA的表达。结果正常sham组,大鼠海马组织DKK-1 mRNA表达较少,β-Catenin阳性产物在细胞质内有所表达;I/R组,DKK-1 mRNA表达明显增多,β-Catenin在胞质内表达明显减少;bFGF组,大鼠海马组织DKK-1 mRNA表达较I/R组明显减少,而海马细胞质内β-Catenin表达较I/R组明显增加。结论bFGF抑制缺血神经元凋亡,参与DKK-1 mRNA和β-Catenin的调节,对缺血神经元有保护作用。  相似文献   

16.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   

17.
Insulin gene expression has been demonstrated in nonpancreatic tissues early in development, suggesting that this hormone might have actions significant for the differentiating embryo. Because such actions imply ligand-receptor binding, we quantified mRNAs encoding the two known forms of insulin receptor in rat liver and yolk sac, two endodermally derived tissues shown to express insulin genes, between gestation days (E) 13 and E21 (mid-organogenesis to parturition). Because of its presumed importance for fetal growth, we estimated the abundance of mRNA encoding insulin-like growth factor 1 (IGF 1) receptor in the same samples for comparison. The abundance of insulin receptor mRNA exceeded that for IGF 1 receptor mRNA in liver and yolk sac at all times studied. This difference was greater in liver, where insulin receptor mRNAs were three to more than 50 times more abundant than IGF 1 receptor mRNA on gestation days E13-E16, times which antedate the development of significant hepatic metabolic actions of insulin. The marked abundance of mRNAs encoding insulin receptors is consistent with the hypothesis that insulin has significant actions in specific tissues during the organogenic period.  相似文献   

18.
Recently, we identified WISP-2 (Wnt-1 inducible signaling pathway protein 2) as a novel estrogen-inducible gene in the MCF-7 human breast cancer cell line. In this study, we examined whether WISP-2 expression is modulated by PK activators. Treatment with protein kinase A (PKA) activators [cholera toxin plus 3-isobutyl-1-methylxanthine (CT/IBMX)] induced WISP-2 expression. CT/IBMX induced expression of the other estrogen-responsive gene, pS2, more dramatically than maximum stimulation by 17beta-estradiol (E2). Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), which directly stimulates protein kinase C (PKC) activity, completely prevented WISP-2 mRNA induction by E2, whereas it increased pS2 mRNA expression more dramatically than maximum stimulation by E2. Results of treatments with the protein synthesis inhibitor cycloheximide and the pure antiestrogen ICI182,780 suggest that these PK pathways modulate WISP-2 gene expression via different molecular mechanisms than those for pS2. Because TPA inhibits cell proliferation, we investigated whether WISP-2 induction was dependent on cell growth. Cells were treated with insulin-like growth factor-1 (IGF-1) or interleukin-1alpha (IL-1alpha) to stimulate or inhibit cell growth, respectively. These treatments had no effect on WISP-2 mRNA expression either alone or in combination with E2, suggesting that WISP-2 induction is independent of cell growth.  相似文献   

19.
Production of new neurons continues throughout life in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus and is influenced by both endocrine and social factors. In sheep parturition is associated with the establishment of a selective bond with the young based on an olfactory learning. The possibility exists that endocrine changes at parturition together with interactions with the young modulate cell proliferation in the neurogenic zones. In the present study, we first investigated the existence of cell proliferation in sheep. Newly born cells labeled by the cell proliferation marker 5-bromo-2′-deoxyuridine (BrdU) were found in the SVZ, the main olfactory bulb (MOB) and the DG and completely co-localized with Ki-67, another mitotic marker. Forty to 50% of the BrdU-labeled cells contained GFAP suggestive of the presence of neural stem cells. Secondly, parturition with or without interactions with the lamb for 2 days, down-regulated the number of BrdU-labeled cells in the 3 proliferation sites in comparison to no pregnancy. An additional control provided evidence that this effect is specific to early postpartum period: estrus with interactions with males did not affect cell proliferation. Our results provide the first characterization of neural cell proliferation in the SVZ, the DG and unexpectedly in the MOB of adult sheep. We hypothesize that the down-regulation of cell proliferation observed in the early postpartum period could facilitate the olfactory perceptual and memory demands associated with maternal behavior by favouring the survival and integration of neurons born earlier.  相似文献   

20.
Echidna and platypus brains were sectioned and stained by Nissl or myelin stains or immunocytochemically for calcium-binding proteins, gamma aminobutyric acid (GABA) or other antigens. Cyto- and myeloarchitecture revealed thalami that are fundamentally mammalian in organization, with the three principal divisions of the thalamus (epithalamus, dorsal thalamus and ventral thalamus) identifiable as in marsupials and eutherian mammals. The dorsal thalamus exhibits more nuclear parcellation than hitherto described, but lack of an internal medullary lamina, caused by splaying out of afferent fibre tracts that contribute to it in other mammals, makes identification of anterior, medial and intralaminar nuclear groups difficult. Differentiation of the ventral nuclei is evident with the ventral posterior nucleus of the platypus enormously expanded into the interior of the cerebral hemisphere, where it adopts a relationship to the striatum not seen in other mammals. Other nuclei such as the lateral dorsal become identifiable by expression of patterns of calcium-binding proteins identical to those found in other mammals. GABA cells are present in the ventral and dorsal thalamic nuclei, and in the ventral thalamus form a remarkable continuum with GABA cells of the two segments of the globus pallidus and pars reticulata of the substantia nigra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号