首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
DNAs that contain specific yeast chromosomal sequences called ARSs transform Saccharomyces cerevisiae at high frequency and can replicate extrachromosomally as plasmids when introduced into S. cerevisiae by transformation. To determine the boundaries of the minimal sequences required for autonomous replication in S. cerevisiae, we have carried out in vitro mutagenesis of the first chromosomal ARS described, ARS1. Rather than identifying a distinct and continuous segment that mediates the ARS+ phenotype, we find three different functional domains within ARS1. We define domain A as the 11-base-pair (bp) sequence that is also found at most other ARS regions. It is necessary but not sufficient for high-frequency transformation. Domain B, which cannot mediate high-frequency transformation, or replicate by itself, is required for efficient, stable replication of plasmids containing domain A. Domain B, as we define it, is continuous with domain A in ARS1, but insertions of 4 bp between the two do not affect replication. The extent of domain B has an upper limit of 109 bp and a lower limit of 46 bp in size. There is no obvious sequence homology between domain B of ARS1 and any other ARS sequence. Finally, domain C is defined on the basis of our deletions as at least 200 bp flanking domain A on the opposite side from domain B and is also required for the stability of domain A in S. cerevisiae. The effect of deletions of domain C can be observed only in the absence of domain B, at least by the assays used in the current study, and the significance of this finding is discussed.  相似文献   

3.
4.
5.
We have analyzed various autonomously replicating sequences (ARSs) in yeast nuclear extract with ARS-specific synthetic oligonucleotides. The EI oligonucleotide sequence, which is derived from HMRE-ARS, and the F1 oligonucleotide sequence, which is derived from telomeric ARS120, appeared to bind to the same cellular factor with high specificity. In addition, each of these oligonucleotides was a competitive inhibitor of the binding of the other. Binding of the ARS binding factor (ABF) to either of these oligonucleotides was inhibited strongly by plasmids containing ARS1 and telomeric TF1-ARS. DNase I footprinting analyses with yeast nuclear extract showed that EI and F1 oligonucleotides eliminated protection of the binding site of ARS binding factor I (ABFI) in domain B of ARS1. Sequence analyses of various telomeric (ARS120 and TF1-ARS) and nontelomeric ARSs (ARS1 and HMRE-ARS) showed the presence of consensus ABFI binding sites in the protein binding domains of all of these ARSs. Consequently, the ABFI and ABFI-like factors bind to these domain B-like sequences in a wide spectrum of ARSs, both telomeric and nontelomeric.  相似文献   

6.
We have previously found that the protein which bound to the essential region of human autonomously replicating sequences (ARS) could be the c-myc proto-oncogene product. Here we examined the binding specificity of human ARS binding protein purified from Burkitt's lymphoma Raji cells. Among several oligodeoxynucleotides, this protein bound to the fragments containing the sequence of 5'-CAPyCTCTNA-3'. Competition analysis revealed that the ARS binding protein could recognize not only the nucleotide sequences but also the high ordered structure.  相似文献   

7.
Replication origins in Saccharomyces cerevisiae are spaced at intervals of approximately 40 kb. However, both measurements of replication fork rate and studies of hypomorphic alleles of genes encoding replication initiation proteins suggest the question of whether replication origins are more closely spaced than should be required. We approached this question by systematically deleting replicators from chromosome III. The first significant increase in loss rate detected for the 315-kb full-length chromosome occurred only after all five efficient chromosomal replicators in the left two-thirds of the chromosome (ARS305, ARS306, ARS307, ARS309, and ARS310) had been deleted. The removal of the inefficient replicator ARS308 from this originless region caused little or no additional increase in loss rate. Chromosome fragmentations that removed the normally inactive replicators on the left end of the chromosome or the replicators distal to ARS310 on the right arm showed that both groups of replicators contribute significantly to the maintenance of the originless chromosome. Surprisingly, a 142-kb derivative of chromosome III, lacking all sequences that function as autonomously replicating sequence elements in plasmids, replicated and segregated properly 97% of the time. Both the replication initiation protein ORC and telomeres or a linear topology were required for the maintenance of chromosome fragments lacking replicators.  相似文献   

8.
We marked a large number of yeast telomeres within their Y' regions by transforming strains with a fragment of Y' DNA into which the URA3 gene had been inserted. A few of the Ura+ transformants obtained were very unstable and were found to contain autonomously replicating URA3-marked circular Y' elements in high copy number. These marked extrachromosomal circles were capable of reintegrating into the chromosome at other telomeric locations. In contrast, most of the Ura+ transformants obtained were quite stable mitotically and were marked at bona fide chromosomal ends. These stable transformants gave rise to mitotically unstable URA3-marked circular Y' elements at a low frequency (up to 2.5%). The likelihood that such excisions and integrations represent a natural process in Saccharomyces cerevisiae is supported by our identification of putative Y' circles in untransformed strains. The transfer of Y' information among telomeres via a circular intermediate may be important for homogenizing the sequences at the ends of yeast chromosomes and for generating the frequent telomeric rearrangements that have been observed in S. cerevisiae.  相似文献   

9.
Summary An 8.6-kb fragment was isolated from an EcoRI digest of Candida albicans ATCC 10261 genomic DNA which conferred the property of autonomous replication in Saccharomyces cervisiae on the otherwise non-replicative plasmid pMK155 (5.6 kb). The DNA responsible for the replicative function was subcloned as a 1.2-kb fragment onto a non-replicative plasmid (pRC3915) containing the C. albicans URA3 and LEU2 genes to form plasmid pRC3920. This plasmid was capable of autonomous replication in both S. cerevisiae and C. albicans and transformed S. cerevisiae AH22 (leu2 ) to Leu+ at a frequency of 2.15 × 103 transformants per pg DNA, and transformed C. albicans SGY-243 (ura3) to Ura+ at a frequency of 1.91 × 103 transformants per g DNA. Sequence analysis of the cloned DNA revealed the presence of two identical regions of eleven base pairs (5TTTTATGTTTT3) which agreed with the consensus of autonomously replicating sequence (ARS) cores functional in S. cerevisiae. In addition there were two 10/11 and numerous 9/11 matches to the core consensus. The two 11/11 matches to the consensus, CaARS1 and CaARS2, were located on opposite strands in a non-coding AT-rich region and were separated by 107 bp. Also present on the C. albicans DNA, 538 by from the ARS cores, was a gene for 5S rRNA which showed sequence homology with several other yeast 5S rRNA genes. A sub-fragment (494 bp) containing the 5S rRNA gene (but not the region containing the ARS cores) hybridized to genomic DNAs from a number of yeast species, including S. cerevisiae, C. tropicalis, C. pseudotropicalis, C. parapsilosis, C. kruseii, C. (Torulopsis) glabrata and Neurospora crassa. The 709-bp ARS element (but not the 5S rRNA gene) was necessary for high-frequency transformation and autonomous plasmid replication in both S. cerevisiae and C. albicans.EMBL/GenBank database accession number: X16634 (5S rRNA)  相似文献   

10.
11.
We have analyzed the role of single-stranded DNA (ssDNA) in the modulation of the ATPase activity of Mcm467 helicase of the yeast Saccharomyces cerevisiae. The ATPase activity of the Mcm467 complex is modulated in a sequence-specific manner and that the ssDNA sequences derived from the origin of DNA replication of S. cerevisiae autonomously replicating sequence 1 (ARS1) are the most effective stimulators. Synthetic oligonucleotides, such as oligo(dA) and oligo(dT), also stimulated the ATPase activity of the Mcm467 complex, where oligo(dT) was more effective than oligo(dA). However, the preference of a thymidine stretch appeared unimportant, because with yeast ARS1 derived sequences, the A-rich strand was as effective in stimulating the ATPase activity, as was the T-rich strand. Both of these strands were more effective stimulators than either oligo(dA)( )()or oligo(dT). The DNA helicase activity of Mcm467 complex is also significantly stimulated by the ARS1-derived sequences. These results indicate that the ssDNA sequences containing A and B1 motifs of ARS1, activate the Mcm467 complex and stimulate its ATPase and DNA helicase activities. Our results also indicate that the yeast replication protein A stimulated the ATPase activity of the Mcm467 complex.  相似文献   

12.
13.
The autonomously replicating sequence ARS121 was cloned as a 480-base-pair (bp) long DNA fragment that confers on plasmids autonomous replication in Saccharomyces cerevisiae. This fragment contains two OBF1-binding sites (sites I and II) of different affinities, as identified by a gel mobility shift assay and footprint analysis. Nucleotide substitutions (16 to 18 bp) within either of the two sites obliterated detectable in vitro OBF1 binding to the mutagenized site. Linker substitution (6 bp) mutations within the high-affinity site I showed effects similar to those of the complete substitution, whereas DNA mutagenized outside the binding site bound OBF1 normally. We also tested the mitotic stability of centromeric plasmids bearing wild-type and mutagenized copies of ARS121. Both deletion of the sites and the extensive base alterations within either of the two OBF1-binding sites reduced the percentage of plasmid-containing cells in the population from about 88% to 50 to 63% under selective growth and from about 46% to 15 to 20% after 10 to 12 generations of nonselective growth. Furthermore, linker (6 bp) substitutions within site I, the high-affinity binding site, showed similar deficiencies in plasmid stability. In contrast, plasmids containing linker substitutions in sequences contiguous to site I displayed wild-type stability. In addition, plasmid copy number analysis indicated that the instability probably resulted not from nondisjunction during mitosis but rather from inefficient plasmid replication. The results strongly support the notion that the OBF1-binding sites and the OBF1 protein are important for normal ARS function as an origin of replication.  相似文献   

14.
The autonomously replicating sequences (ARSs) of pSR1, a cryptic circular DNA plasmid detected in a strain of Zygosaccharomyces rouxii, were delimited by subcloning and deletion analysis and by the isolation of nucleotide substitution mutations. A 30 base-pair (bp) sequence from inverted repeat 1 (IR1) and presumably the same region from IR2 of pSR1 functions as an ARS in the native host, Z. rouxii, and in a heterologous host, Saccharomyces cerevisiae. Thus, pSR1 has two ARSs per molecule, either of which is sufficient for replication of the plasmid molecule in both hosts. These hosts, however, respond differently to nucleotide substitutions in the 30 bp sequence, suggesting that the sequences required for ARS function in the two organisms are not exactly the same. In addition, a 137 bp sequence that overlaps the 30 bp sequence by 11 bp also functions as an ARS in Z. rouxii but not in S. cerevisiae. However, this 137 bp sequence enhances the stability of plasmids carrying the pSR1 ARS in S. cerevisiae. The 30 bp and 137 bp sequences each contain a single copy of the 11 bp ARS consensus sequence, which is essential for ARS function in S. cerevisiae. Small insertions between the 11 bp overlapping region and the 11 bp ARS consensus sequence showed that a proper distance between these two 11 bp sequences is essential for the ARS function of the 30 bp sequence. Point mutations that inactivate ARS function show that the ARS consensus sequence, as well as a short A:T segment in the overlapping sequence, is required for the ARS function of the 30 bp sequence.  相似文献   

15.
酿酒酵母ADH3基因的敲除   总被引:2,自引:0,他引:2  
设计含有与酿酒酵母(Saccharomyces cerevisiae)编码乙醇脱氢酶Ⅲ的ADH3基因ORF两侧序列同源的长引物,以质粒pUG6为模板进行PCR构建带有Cre/loxP系统的敲除组件。转化酿酒酵母YS3(Saccharomyces cerevisiae),并将质粒pSH65转入阳性克隆子。半乳糖诱导表达Cre酶切除Kanr基因,在YPD培养基中连续传代培养丢失pSH65质粒,在原ORF处留下一个loxP位点,获得ADH3单倍体缺陷型菌株。利用同样的方法再次敲除双倍体的另一个等位基因。最终获得ADH3双倍体基因缺陷型突变株YS3-ADH3。  相似文献   

16.
B C Hyman  J H Cramer  R H Rownd 《Gene》1983,26(2-3):223-230
Restriction fragments produced by a complete Sau3A cleavage of Saccharomyces cerevisiae grande mitochondrial DNA were ligated into the yeast-Escherichia coli shuttle vector YIp5 to establish a clone library representing the mitochondrial genome. 30 hybrid plasmids with an average insert size of 1200 bp were chosen at random and tested for the presence of an autonomously replicating sequence (ars). Over two-thirds of these plasmids transformed yeast at high frequency, indicating the mitochondrial genome contains a large number of ars elements. Our calculations suggest there may be over 40 ars elements contained within the mitochondrial DNA with an average spacing of less than 1700 bp. Mapping experiments indicate that ars elements can be found at many locations on the mitochondrial genome, and in the initial example we have tested, the locations of ars elements derived from grande and petite mtDNAs appear to coincide. If we assume that these ars elements represent mitochondrial DNA replication origins used in vivo, these observations would explain in part the fact that petite mtDNAs can be derived from any location on the grande mitochondrial genome.  相似文献   

17.
We have reported the isolation of linking clones of HindIII and EcoRI fragments, altogether spanning a 230-kb continuous stretch of chromosome VI. The presence or absence of autonomously replicating sequence (ARS) activities in all of these fragments has been determined by using ARS searching vectors containing CEN4. Nine ARS fragments were identified, and their positions were mapped on the chromosome. Structures essential for and/or stimulative to ARS activity were determined for the ARS fragments by deletions and mutations. The organization of functional elements composed of core and stimulative sequences was found to be variable. Single core sequences were identified in eight of nine ARSs. The remaining ARS (ARS603) essential element is composed of two core-like sequences. The lengths of 3'- and 5'-flanking stimulative sequences required for the full activity of ARSs varied from ARS to ARS. Five ARSs required more than 100 bp of the 3'-flanking sequence as stimulative sequences, while not more than 79 bp of the 3' sequence was required by the other three ARSs. In addition, five ARSs had stimulative sequences varying from 127 to 312 bp in the 5'-flanking region of the core sequence. In general, these stimulative activities were correlated with low local delta Gs of unwinding, suggesting that the low local delta G of an ARS is an important element for determining the efficiency of initiation of replication of ARS plasmids.  相似文献   

18.
The rDNA region of Saccharomyces cerevisiae contains 100-200 tandemly repeated copies of a 9 kb unit, each with a potential replication origin. In the present studies of cloned fragments from the region involved in the regulation of replication of rDNA, we detected differences in autonomously replicating sequence (ARS) activity for clones from the same yeast strain. One clone, which showed very low ARS activity, carried a point mutation, a C instead of T, in position 9 of the essential 11 bp consensus ARS as compared to clones carrying the normal 10-of-11-bp match to the consensus. The mutation could be traced back to genomic rDNA where it represents about one-third of the rDNA units in that strain. Differences in ARS activity have implications for understanding the regulation of replication of rDNA, and the ratio of active to inactive ARS in the rDNA region may be important for potential generation of extrachromosomal copies.  相似文献   

19.
The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.  相似文献   

20.
We previously identified a protein activity from Saccharomyces cerevisiae, OBF1, that bound specifically to a DNA element present in autonomously replicating sequences ARS120 and ARS121 (S. Eisenberg C. Civalier, and B. K. Tye, Proc. Natl. Acad. Sci. USA 85:743-746, 1988). OBF1 has now been purified to near homogeneity by conventional protein and DNA affinity chromatography. Electrophoresis of the purified protein in sodium dodecyl sulfate-polyacrylamide gels revealed the presence of two polypeptides. The major protein band had a relative molecular size of 123 kilodaltons, and the minor protein band, which constituted only a small fraction of total protein, had a molecular size of 127 kilodaltons. Both polypeptides cochromatographed with the specific ARS120 DNA-binding activity and formed a stable protein-DNA complex, isolatable by sedimentation through sucrose gradients. Using antibodies, we have shown that both polypeptides are associated with the isolated protein-DNA complexes. The ARS DNA-binding activity had a Stokes radius of 54 A (5.4 nm) and a sedimentation coefficient of 4.28S, as determined by gel filtration and sedimentation through glycerol gradients, respectively. These physical parameters, together with the denatured molecular size values, suggested that the proteins exist in solution as asymmetric monomers. Since both polypeptides recognized identical sequences and had similar physical properties, they are probably related. In addition to binding to ARS120, we found that purified OBF1 bounds with equal affinity to ARS121 and with 5- and 10-fold-lower affinity to ARS1 and HMRE, respectively. Furthermore, in the accompanying paper (S. S. Walker, S. C. Francesconi, B. K. Tye, and S. Eisenberg, Mol. Cell. Biol. 9:2914-2921, 1989), we demonstrate the existence of a high, direct correlation between the ability of purify OBF1 to bind to ARS121 and optimal in vivo ARS121 activity as an origin of replication. These findings, taken together, suggest a role for OBF1 in ARS function, presumably at the level of initiation of DNA replication at the ARS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号