首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five Neurospora crassa mutants obtained by chemical mutagenesis were screened for increased resistance to various antifungal plant defensins. Plant defensin-resistant N. crassa mutants were further tested for their cross-resistance towards other families of structurally different antimicrobial peptides. Two N. crassa mutants, termed MUT16 and MUT24, displaying resistance towards all plant defensins tested but not to structurally different antimicrobial peptides were selected for further characterization. MUT16 and MUT24 were more resistant towards plant defensin-induced membrane permeabilization as compared to the N. crassa wild-type. Based on the previously demonstrated key role of fungal sphingolipids in the mechanism of growth inhibition by plant defensins, membrane sphingolipids of MUT16 and MUT24 were analysed. Membranes of these mutants contained structurally different glucosylceramides, novel glycosylinositolphosphorylceramides, and an altered level of steryl glucosides. Evidence is provided to link these clear differences in sphingolipid profiles of N. crassa mutants with their resistance towards different plant defensins.  相似文献   

2.
Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes is considered as the main mechanism involved in the antagonistic process. Strain Trichoderma harzianum T334 is a potential biocontrol agent against plant pathogenic fungi with the ability to produce low levels of proteases constitutively. To improve its fungal antagonistic capacity, mutagenetic program was undertaken for the construction of protease overproducing derivates. The mutant strains were obtained by means of UV-irradiation and were selected for p-fluorophenyl-alanine resistance or altered colony morphology. It was revealed by means of specific chromogenic protease substrates that both trypsin-like and chymotrypsin-like protease secretion was elevated in most of the mutant strains. The profiles of isoenzymes were different between the mutants and the wild-type strain, when examined by gel filtration chromatography. Certain mutants proved to be better antagonists against plant pathogens in in vitro antagonism experiments. This study suggests the possibility of using mutants with improved constitutive extracellular protease secretion against plant pathogenic fungi.  相似文献   

3.
The heteropolysaccharide present in fraction 1 of the Neurospora crassa cell wall has been characterized in wild-type and morphological mutant strains of this fungus. Single and double mutations have been studied to determine possible genetic interactions controlling the chemical composition of such heteropolysaccharides . Single mutations studied were peak-2, scumbo ( FGSC 49), ragged ( FGSC 296), and crisp -1 ( FGSC 488). Double mutations studied were peak-2, scumbo ( FGSC 419), and ragged crisp -1. In all these strains, the main constituents of the heteropolysaccharide were glucose, mannose and galactose. Glycosidic linkages binding these neutral sugars have been identified by gas-liquid chromatography. A chemical structure of fraction I heteropolysaccharide is proposed. The results obtained with double mutants suggest the existence of genetic interactions, such as complementation or additive effects of lesions of different genes, to control the chemical composition and structure of the cell wall and the morphology of N. crassa mycelium.  相似文献   

4.
Son H  Min K  Lee J  Raju NB  Lee YW 《Fungal biology》2011,115(12):1290-1302
The homothallic ascomycete fungus Gibberella zeae is an important pathogen on major cereal crops. The objective of this study was to determine whether meiotic silencing occurs in G. zeae. Cytological studies demonstrated that GFP and RFP-fusion proteins were not detected during meiosis, both in heterozygous outcrosses and homozygous selfings. The deletion of rsp-1, a homologue used for studies on meiotic silencing of Neurospora crassa, triggered abnormal ascospores from selfing, but outcrosses between the mutant and wild-type strain resulted in some ascospores with mutant phenotype (low occurrence of ascus dominance). When the ectopic mutants that carried an additional copy of rsp-1 were selfed, they primarily produced ascospores with normal shape but a few ascospores (0.23 %) were abnormal, in which both endogenous and ectopically integrated genes contained numerous point mutations. The ectopic mutants showed low occurrence of ascus dominance in outcrosses with strains that carried the wild-type allele. Approximately 10 % of ascospores were abnormal but all of the single-ascospore isolates produced normal-shaped ascospores from selfing. However, no ascus dominance was observed when the mutants were outcrossed with a sad-1 deletion mutant, which lacks the putative RNA-dependent RNA polymerase essential for meiotic silencing in N. crassa. All results were consistent with those generated from an additional gene, roa, required for ascospore morphogenesis. This study demonstrated that G. zeae possesses a functional meiotic silencing mechanism which is triggered by unpaired DNA, as in N. crassa.  相似文献   

5.
Live-cell imaging methods were used to study microtubule dynamics in the apical regions of leading hyphae and germ tubes of Neurospora crassa expressing beta-tubulin-GFP. Microtubule polymerization rates in hyphae of N. crassa were much faster than those previously reported in any other eukaryotic organism. In order to address the roles of motor proteins in microtubule dynamic instability in N. crassa, the microtubule-motor mutant strains, Deltankin and ro-1, were examined. Polymerization and depolymerization rates in leading hyphae of these strains were reduced by one half relative to the wild type. Furthermore, microtubules in germ tubes of wild type and microtubule-motor mutants exhibited similar dynamic characteristics as those in hyphae of mutant strains. Small microtubule fragments exhibiting anterograde and retrograde motility were present in leading hyphae of all strains and germ tubes of wild-type strains. Our data suggest that microtubule motors play important roles in regulating microtubule dynamic instability in leading hyphae but not in germ tubes.  相似文献   

6.
M. Duarte  R. Sousa    A. Videira 《Genetics》1995,139(3):1211-1221
We have isolated and characterized the nuclear genes encoding the 12.3-kD subunit of the membrane arm and the 29.9-kD subunit of the peripheral arm of complex I from Neurospora crassa. The former gene was known to be located in linkage group I and the latter is now assigned to linkage group IV of the fungal genome. The genes were separately transformed into different N. crassa strains and transformants with duplicated DNA sequences were isolated. Selected transformants were then mated with other strains to generate repeat-induced point mutations in both copies of the genes present in the nucleus of the parental transformant. From the progeny of the crosses, we were then able to recover two individual mutants lacking the 12.3- and 29.9-kD proteins in their mitochondria, mutants nuo12.3 and nuo29.9, respectively. Several other subunits of complex I are present in the mutant organelles, although with altered stoichiometries as compared with those in the wild-type strain. Based on the analysis of Triton-solubilized mitochondrial complexes in sucrose gradients, neither mutant is able to fully assemble complex I. Our results indicate that mutant nuo12.3 separately assembles the peripheral arm and most of the membrane arm of the enzyme. Mutant nuo29.9 seems to accumulate the membrane arm of complex I and being devoid of the peripheral part. This implicates the 29.9-kD protein in an early step of complex I assembly.  相似文献   

7.
Live-cell imaging methods were used to study microtubule dynamics in the apical regions of leading hyphae and germ tubes of Neurospora crassa expressing beta-tubulin-GFP. Microtubule polymerization rates in hyphae of N. crassa were much faster than those previously reported in any other eukaryotic organism. In order to address the roles of motor proteins in microtubule dynamic instability in N. crassa, the microtubule-motor mutant strains, Deltankin and ro-1, were examined. Polymerization and depolymerization rates in leading hyphae of these strains were reduced by one half relative to the wild type. Furthermore, microtubules in germ tubes of wild type and microtubule-motor mutants exhibited similar dynamic characteristics as those in hyphae of mutant strains. Small microtubule fragments exhibiting anterograde and retrograde motility were present in leading hyphae of all strains and germ tubes of wild-type strains. Our data suggest that microtubule motors play important roles in regulating microtubule dynamic instability in leading hyphae but not in germ tubes.  相似文献   

8.
Inoculation of wild-type Arabidopsis plants with the fungus Alternaria brassicicola results in systemic induction of genes encoding a plant defensin (PDF1.2), a basic chitinase (PR-3), and an acidic hevein-like protein (PR-4). Pathogen-induced induction of these three genes is almost completely abolished in the ethylene-insensitive Arabidopsis mutant ein2-1. This indicates that a functional ethylene signal transduction component (EIN2) is required in this response. The ein2-1 mutants were found to be markedly more susceptible than wild-type plants to infection by two different strains of the gray mold fungus Botrytis cinerea. In contrast, no increased fungal colonization of ein2-1 mutants was observed after challenge with avirulent strains of either Peronospora parasitica or A. brassicicola. Our data support the conclusion that ethylene-controlled responses play a role in resistance of Arabidopsis to some but not all types of pathogens.  相似文献   

9.
Gamma-Ray-induced inactivation and induction of mutations at the ad-3A and ad-3B loci of Neurospora crassa have been compared among 6 different UV-sensitive strains and a standard wild-type strain. The 6 strains show varying degrees of sensitivity to gamma-ray-induced inactivation, with the relative sensitivity at 37% survival being uvs-6 greater than upr-1 greater than uvs-2 greater than uvs-3 greater than wild-type greater than uvs-5 greater than uvs-4. Studies on the induction of ad-3 mutants by gamma-rays show that when the dose-response curve (expressed in terms of ad-3 mutants among the surviving colonies) of the UV-sensitive strains are compared with wild-type, the 2 excision-repair-deficient mutants uvs-2 and upr-1 exhibit enhanced ad-3 mutant frequencies, uvs-3 exhibits reduced ad-3 mutant frequencies whereas both uvs-4 and uvs-5 show lower mutant frequencies than wild-type.  相似文献   

10.
Li L  Borkovich KA 《Eukaryotic cell》2006,5(8):1287-1300
The filamentous fungus Neurospora crassa is able to utilize a wide variety of carbon sources. Here, we examine the involvement of a predicted G-protein-coupled receptor (GPCR), GPR-4, during growth and development in the presence of different carbon sources in N. crassa. Deltagpr-4 mutants have reduced mass accumulation compared to the wild type when cultured on high levels of glycerol, mannitol, or arabinose. The defect is most severe on glycerol and is cell density dependent. The genetic and physical relationship between GPR-4 and the three N. crassa Galpha subunits (GNA-1, GNA-2, and GNA-3) was explored. All three Galpha mutants are defective in mass accumulation when cultured on glycerol. However, the phenotypes of Deltagna-1 and Deltagpr-4 Deltagna-1 mutants are identical, introduction of a constitutively activated gna-1 allele suppresses the defects of the Deltagpr-4 mutation, and the carboxy terminus of GPR-4 interacts most strongly with GNA-1 in the yeast two-hybrid assay. Although steady-state cyclic AMP (cAMP) levels are normal in Deltagpr-4 strains, exogenous cAMP partially remediates the dry mass defects of Deltagpr-4 mutants on glycerol medium and Deltagpr-4 strains lack the transient increase in cAMP levels observed in the wild type after addition of glucose to glycerol-grown liquid cultures. Our results support the hypothesis that GPR-4 is coupled to GNA-1 in a cAMP signaling pathway that regulates the response to carbon source in N. crassa. GPR-4-related GPCRs are present in the genomes of several filamentous ascomycete fungal pathogens, raising the possibility that a similar pathway regulates carbon sensing in these organisms.  相似文献   

11.
P59Nc is a 59-kD polypeptide associated with 8-10-nm diameter cellular filaments in normal Neurospora crassa strains. Abnormally sized and shaped bundles of these structures are present in N. crassa strains carrying mutations at the locus sn (snowflake). By using molecular cloning and restriction fragment length polymorphism (RFLP) segregation analysis strategies we show here that sn is not the genetic locus of P59Nc. Several P59Nc cDNAs were cloned from a N. crassa lambda GT11 library after immunoscreening with specific polyclonal anti-P59Nc antibodies. Additional longer cDNAs were obtained from a N. crassa cDNA-lambda ZAP library. When used as probes in Southern blots of total DNA from wild-type strains, multicent-2 (a multiple mutant strain), and snowflake mutants, the P59Nc cDNAs revealed comparable patterns of hybridizing bands for all of the restriction enzymes tested. Analysis of segregation of BclI and ClaI RFLPs, detected in the genomic region of the P59Nc gene (locus cfp: cellular filament polypeptide), among a set of strains designed for RFLP mapping, or among selected progeny of crosses involving a snowflake parent, respectively, indicate that (i) there is in N. crassa a single cfp locus positioned on the right arm of linkage group VII between the locus for and the proximal breakpoint of the translocation T(VII----I)5936; (ii) the sn mutations in the centromere region of chromosome I do not represent translocations of cfp; and (iii) the snowflake mutants possesses a normal copy of the P59Nc gene on their chromosomes VII.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
NADH:quinone oxidoreductase (complex I) plays a central role in cellular energy metabolism, and its dysfunction is found in numerous human mitochondrial diseases. Although the understanding of its structure and function has been limited, the x-ray crystal structure of the hydrophilic part of Thermus thermophilus complex I recently became available. It revealed the localization of all redox centers, including 9 iron-sulfur clusters and their coordinating ligands, and confirmed the predictions mostly made by Ohnishi et al. (Ohnishi, T., and Nakamaru-Ogiso, E. (2008) Biochim. Biophys. Acta 1777, 703-710) based on various EPR studies. Recently, Yakovlev et al. (Yakovlev, G., Reda, T., and Hirst, J. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 12720-12725) claimed that the EPR signals from clusters N4, N5, and N6b were misassigned. Here we identified and characterized cluster N5 in the Escherichia coli complex I whose EPR signals had never been detected by any group. Using homologous recombination, we constructed mutant strains of H101A, H101C, H101A/C114A, and cluster N5 knock-out. Although mutant NuoEFG subcomplexes were dissociated from complex I, we successfully recovered these mutant NuoCDEFG subcomplexes by expressing the His-tagged NuoCD subunit, which had a high affinity to NuoG. The W221A mutant was used as a control subcomplex carrying wild-type clusters. By lowering temperatures to around 3 K, we finally succeeded in detecting cluster N5 signals in the control for the first time. However, no cluster N5 signals were found in any of the N5 mutants, whereas EPR signals from all other clusters were detected. These data confirmed that, contrary to the misassignment claim, cluster N5 has a unique coordination with His(Cys)(3) ligands in NuoG.  相似文献   

13.
Enzymatic superoxide-dismutase activity is believed to be important in defense against the toxic effects of superoxide. Although superoxide dismutases are among the best studied proteins, numerous questions remain concerning the specific biological roles of the various superoxide-dismutase types. In part, this is because the proposed damaging effects of superoxide are manifold, ranging from inactivation of certain metabolic enzymes to DNA damage. Studies with superoxide-deficient mutants have proven valuable, but surprisingly few such studies have been reported. We have constructed and characterized Neurospora crassa mutants that are null for sod-1, the gene that encodes copper-zinc superoxide dismutase. Mutant strains are sensitive to paraquat and elevated oxygen concentrations, and they exhibit an increased spontaneous mutation rate. They appear to have near wild-type sensitivities to near- and far-UV, heat shock and γ-irradiation. Unlike the equivalent Saccharomyces cerevisiae mutant and the sodA sodB double mutant of Escherichia coli, they do not exhibit aerobic auxotrophy. These results are discussed in the context of an attempt to identify consensus phenotypes among superoxide dismutase-deficient mutants. N. crassa sod-1 null mutant strains were also employed in genetic and subcellular fractionation studies. Results support the hypothesis that a single gene (sod-1), located between Fsr-12 and leu-3 on linkage group I, is responsible for most or all CuZn superoxide dismutase activity in this organism.  相似文献   

14.
Neurospora crassa is a heterothallic filamentous fungus with two mating types, mat a and mat A. Its mating involves differentiation of female reproductive structures (protoperithecia) and chemotropic growth of female-specific hyphae (trichogynes) towards a cell of the opposite mating type in a pheromone-mediated process. In this study, we characterize the pre-1 gene, encoding a predicted G-protein-coupled receptor with sequence similarity to fungal pheromone receptors. pre-1 is most highly expressed in mat A strains under mating conditions, but low levels can also be detected in mat a strains. Analysis of pre-1 deletion mutants showed that loss of pre-1 does not greatly affect vegetative growth, heterokaryon formation or male fertility in either mating type. Protoperithecia from Deltapre-1 mat A mutants do not undergo fertilization; this defect largely stems from an inability of their trichogynes to recognize and fuse with mat a cells. Previous work has demonstrated that the Galpha subunit, GNA-1, and the Gbeta protein, GNB-1, are essential for female fertility in N. crassa. Trichogynes of Deltagna-1 and Deltagnb-1 mutants displayed severe defects in growth towards and fusion with male cells, similar to that of Deltapre-1 mat A strains. However, the female sterility defect of the Deltapre-1 mat A mutant could not be complemented by constitutive activation of gna-1, suggesting additional layers of regulation. We propose that PRE-1 is a pheromone receptor coupled to GNA-1 that is essential for the mating of mat A strains as females, consistent with a role in launching the pheromone response pathway in N. crassa.  相似文献   

15.
Plant defensins, components of the plant innate immune system, are cationic cysteine-rich antifungal peptides. Evidence from the literature [Thevissen, K., et al. (2003) Peptides 24, 1705-1712] has demonstrated that patches of fungi membrane containing mannosyldiinositolphosphorylceramide and glucosylceramides are selective binding sites for the plant defensins isolated from Dahlia merckii and Raphanus sativus, respectively. Whether plant defensins interact directly or indirectly with fungus intracellular targets is unknown. To identify physical protein-protein interactions, a GAL4-based yeast two-hybrid system was performed using the antifungal plant peptide Pisum sativum defensin 1 (Psd1) as the bait. Target proteins were screened within a Neurospora crassa cDNA library. Nine out of 11 two-hybrid candidates were nuclear proteins. One clone, detected with high frequency per screening, presented sequence similarity to a cyclin-like protein, with F-box and WD-repeat domains, related to the cell cycle control. GST pull-down assay corroborated in vitro this two-hybrid interaction. Fluorescence microscopy analysis of FITC-conjugated Psd1 and DAPI-stained fungal nuclei showed in vivo the colocalization of the plant peptide Psd1 and the nucleus. Analysis of the DNA content of N. crassa conidia using flow cytometry suggested that Psd1 directed cell cycle impairment and caused conidia to undergo endoreduplication. The developing retina of neonatal rats was used as a model to observe the interkinetic nuclear migration during proliferation of an organized tissue from the S toward the M phase of the cell cycle in the presence of Psd1. The results demonstrated that the plant defensin Psd1 regulates interkinetic nuclear migration in retinal neuroblasts.  相似文献   

16.
Glutamine synthetase derived from two Neurospora crassa glutamine auxotrophs was characterized. Previous genetic studies indicated that the mutations responsible for the glutamine auxotrophy are allelic and map in chromosome V. When measured in crude extracts, both mutant strains had lower glutamine synthetase specific activity than that found in the wild-type strain. The enzyme from both auxotrophs and the wild-type strain was partially purified from cultures grown on glutamine as the sole nitrogen source, and immunochemical studies were performed in crude extracts and purified fractions. Quantitative rocket immunoelectrophoresis indicated that the activity per enzyme molecule is lower in the mutants than in the wild-type strain; immunoelectrophoresis and immunochemical titration of enzyme activity demonstrated structural differences between the enzymes from both auxotrophs. On the other hand, the monomer of glutamine synthetase of both mutants was found to be of a molecular weight similar to that of the wild-type strain. These data indicate that the mutations are located in the structural gene of N. crassa glutamine synthetase.  相似文献   

17.
Sakai W  Wada Y  Naoi Y  Ishii C  Inoue H 《DNA Repair》2003,2(3):337-346
In a previous paper, we reported that the Neurospora crassa upr-1 gene is a homolog of the yeast gene REV3, which encodes the catalytic subunit of DNA polymerase zeta (polzeta). Characterization of the upr-1 mutant indicated that the UPR1 protein plays a role in DNA repair and mutagenesis. To help understand the mechanisms of mutagenic DNA repair in the N. crassa more extensively, we identified N. crassa homologs of yeast REV1 and REV7 and obtained mutants ncrev1 or ncrev7, which had similar phenotypes to the upr-1 mutant. Mutant carrying ncrev7 was more sensitive to UV and 4NQO, and slightly sensitive to MMS than the wild-type. The sensitivity to UV and MMS of the ncrev1 mutant was moderately higher than that of the wild-type, but the sensitivity to 4NQO of the mutant was similar to that of the wild-type. In reversion assay using testers with base substitution or frameshift mutation at the ad-3A locus, each of ncrev1 and ncrev7 mutants showed lower induced-mutability than the wild-type. Expression of ncrev1 and ncrev7 was found to be UV-inducible like the case of upr-1. Genetic analyses showed that the ncrev7 was identical to mus-26, which belongs to the upr-1 epistasis group, and that the ncrev1 was a newly identified DNA repair gene and designated as mus-42. Interestingly, all three mutants have a normal CPD photolyase gene, however, they showed a partial photoreactivation defect (PPD) phenotype, not completely defective but inefficient in photoreactivation. These results suggest that N. crassa REV homolog genes function in DNA repair and UV mutagenesis through the bypass of (6-4) photoproducts.  相似文献   

18.
Neurospora crassa mitochondria use a branched electron transport system in which one branch is a conventional cytochrome system and the other is an alternative cyanide-resistant, hydroxamic acid-sensitive oxidase that is induced when the cytochrome system is impaired. We used a monoclonal antibody to the alternative oxidase of the higher plant Sauromatum guttatum to identify a similar set of related polypeptides (Mr, 36,500 and 37,000) that was associated with the alternative oxidase activity of N. crassa mitochondria. These polypeptides were not present constitutively in the mitochondria of a wild-type N. crassa strain, but were produced in high amounts under conditions that induced alternative oxidase activity. Under the same conditions, mutants in the aod-1 gene, with one exception, produced apparently inactive alternative oxidase polypeptides, whereas mutants in the aod-2 gene failed to produce these polypeptides. The latter findings support the hypothesis that aod-1 is a structural gene for the alternative oxidase and that the aod-2 gene encodes a component that is required for induction of alternative oxidase activity. Finally, our results indicate that the alternative oxidase is highly conserved, even between plant and fungal species.  相似文献   

19.
20.
A comparative study of aerobic generation of O2 and anaerobic photoproduction of H2 in whole cells of a wild-type strain of Chlamydomonas reinhardtii and its photosystem I-deficient mutants B4 and F8 found no contribution of photosystem II to ferredoxin photoreduction, which is not consistent with data of recent studies by Greenbaum et al. (Nature, 1995, 376, 438-441; and Science, 1996, 273, 364-367) who reported that they had discovered such a capacity in these mutant strains. In the wild-type and mutant strains, action spectra showed that O2 was evolved by photosystem II, whereas photoinhibition of chlororespiration and evolution of H2 depended on the activity of photosystem I. Single-turnover flash measurements of H2 evolution showed that the contents of photosystem I in mutant strains amounted to 3-35% of that in the wild-type strain. This fraction of photosystem I in "leaky" mutants displayed abnormal kinetic features and was highly sensitive to photoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号