首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Human brain S100b (beta beta) protein was purified using zinc-dependent affinity chromatography on phenyl-Sepharose. The calcium- and zinc-binding properties of the protein were studied by flow dialysis technique and the protein conformation both in the metal-free form and in the presence of Ca2+ or Zn2+ was investigated with ultraviolet spectroscopy, sulfhydryl reactivity and interaction with a hydrophobic fluorescence probe 6-(p-toluidino)naphthalene-2-sulfonic acid (TNS). Flow dialysis measurements of Ca2+ binding to human brain S100b (beta beta) protein revealed six Ca2+-binding sites which we assumed to represent three for each beta monomer, characterized by the macroscopic association constants K1 = 0.44 X 10(5) M-1; K2 = 0.1 X 10(5) M-1 and K3 = 0.08 X 10(5) M-1. In the presence of 120 mM KCl, the affinity of the protein for calcium is drastically reduced. Zinc-binding studies on human S100b protein showed that the protein bound two zinc ions per beta monomer, with macroscopic constants K1 = 4.47 X 10(7) M-1 and K2 = 0.1 X 10(7) M-1. Most of the Zn2+-induced conformational changes occurred after the binding of two zinc ions per mole of S100b protein. These results differ significantly from those for bovine protein and cast doubt on the conservation of the S100 structure during evolution. When calcium binding was studied in the presence of zinc, we noted an increase in the affinity of the protein for calcium, K1 = 4.4 X 10(5) M-1; K2 = 0.57 X 10(5) M-1; K3 = 0.023 X 10(5) M-1. These results indicated that the Ca2+- and Zn2+-binding sites on S100b protein are different and suggest that Zn2+ may regulate Ca2+ binding by increasing the affinity of the protein for calcium.  相似文献   

2.
F H Zucker  J W Hershey 《Biochemistry》1986,25(12):3682-3690
The interaction of initiation factor IF1 with 30S ribosomal subunits was measured quantitatively by fluorescence polarization. Purified IF1 was treated with 2-iminothiolane and N-[[(iodoacetyl)-amino]ethyl]-5-naphthylamine-1-sulfonic acid in order to prepare a covalent fluorescent derivative without eliminating positive charges on the protein required for biochemical activity. The fluorescent-labeled IF1 binds to 30S subunits and promotes the formation of N-formylmethionyl-tRNA complexes with 70S ribosomes. Analyses of mixtures of fluorescent-labeled IF1 and 30S ribosomal subunits with an SLM 4800 spectrofluorometer showed little change in fluorescence spectra or lifetimes upon binding, but a difference in polarization between free and bound forms is measurable. Bound to free ratios were calculated from polarization data and used in Scatchard plots to determine equilibrium binding constants and number of binding sites per ribosomal subunit. Competition between derivatized and nonderivatized forms of IF1 was quantified, and association constants for the native factor were determined: (5 +/- 1) X 10(5) M-1 with IF1 alone; (3.6 +/- 0.4) X 10(7) M-1 with IF3; (1.1 +/- 0.2) X 10(8) M-1 with IF2; (2.5 +/- 0.5) X 10(8) M-1 with both IF2 and IF3. In all cases, 0.9-1.1 binding sites per 30S subunit were detected. Divalent cations have little effect on affinities, whereas increasing monovalent cations inhibit binding. On the basis of the association constants, we predict that greater than 90% of native 30S subunits are complexed with all three initiation factors in intact bacterial cells.  相似文献   

3.
The kinetics of the interaction between the 50 S subunits (R) of bacterial ribosomes and the antibiotics virginiamycin S (VS), virginiamycin M (VM), and erythromycin have been studied by stopped flow fluorimetric analysis, based on the enhancement of VS fluorescence upon its binding to the 50 S ribosomal subunit. Virginiamycin components M and S exhibit a synergistic effect in vivo, which is characterized in vitro by a 5- to 10-fold increase of the affinity of ribosomes for VS, and by the loss of the ability of erythromycin to displace VS subsequent to the conformational change (from R to R*) produced by transient contact of ribosomes with VM. Our kinetic studies show that the VM-induced increase of the ribosomal affinity for VS (K*VS = 25 X 10(6) M-1 instead of KVS = 5.5 X 10(6) M-1) is due to a decrease of the dissociation rate constant (k*-VS = 0.008 s-1 instead of 0.04 s-1). The association rate constant remains practically the same (k+VS approximately k*+VS = 2.8 X 10(5) M-1 s-1), irrespective of the presence of VM. VS and erythromycin bind competitively to ribosomes. This effect has been exploited to determine the dissociation rate constant of VS directly by displacement experiments from VS . 50 S complexes, and the association rate constant of erythromycin (k+Ery = 3.2 X 10(5) M-1 S-1) on the basis of competition experiments for binding of free erythromycin and VS to ribosomes. By making use of the change in competition behavior of erythromycin and VS, after interaction of ribosomes with VM, the conformational change induced by VM has been explored. Within the experimentally available concentration region, the catalytic effect of VM has been shown to be coupled to its binding kinetics, and the association rate constant of VM has been determined (k+VM = 1.4 X 10(4) M-1 S-1). Evidence is presented for a low affinity binding of erythromycin (K*Ery approximately 3.3 X 10(4) M-1) to ribosomes altered by contact with VM. A model involving a sequence of 5 reactions has been proposed to explain the replacement of ribosome-bound erythromycin by VS upon contact of 50 S subunits with VM.  相似文献   

4.
The effect of temperature on the binding of thyroxine and triiodothyronine to thyroxine-binding globulin has been studied by equilibrium dialysis. Inclusion of ovalbumin in the dialysis mixture stabilized thyroxine-binding globulin against losses in binding activity which had been found to occur during equilibrium dialysis. Ovalbumin by itself bound the thyroid hormones very weakly and its binding could be neglected when analyzing the experimental results. At pH 7.4 and 37 degrees in 0.06 M potassium phosphate/0.7 mM EDTA buffer, thyroxine was bound to thyroxine-binding globulin at a single binding site with apparent association constants: at 5 degrees, K = 4.73 +/- 0.38 X 10(10) M-1; at 25 degrees, K = 1.55 +/- 0.17 X 10(10) M-1; and at 37 degrees, K = 9.08 +/- 0.62 X 10(9) M-1. Scatchard plots of the binding data for triiodothyronine indicated that the binding of this compound to thyroxine-binding globulin was more complex than that found for thyroxine. The data for triiodothyronine binding could be fitted by asuming the existence of two different classes of binding sites. At 5 degrees and pH 7.4 nonlinear regression analysis of the data yielded the values n1 = 1.04 +/- 0.10, K1 = 3.35 +/- 0.63 X 10(9) M-1 and n2 = 1.40 +/- 0.08, K2 = 0.69 +/- 0.20 X 10(8) M-1. At 25 degrees, the values for the binding constants were n1 = 1.04 +/- 0.38, K1 = 6.5 +/- 2.8 X 10(8) M-1 and n2 = 0.77 +/- 0.22, K2 = 0.43 +/- 0.62 X 10(8) M-1. At 37 degrees where less curvature was observed, the estimated binding constants were n1 = 1.02 +/- 0.06, K1 = 4.32 +/- 0.59 X 10(8) M-1 and n2K2 = 0.056 +/- 0.012 X 10(8) M-1. When n1 was fixed at 1, the resulting values obtained for the other three binding constants were at 25 degrees, K1 = 6.12 +/- 0.35 X 10(8) M-1, n2 = 0.72 +/- 0.18, K2 = 0.73 +/- 0.36 X 10(8) M-1; and at 37 degrees K1 = 3.80 +/- 0.22 X 10(8) M-1, n2 = 0.44 +/- 0.22, and K2 = 0.43 +/- 0.38 X 10(8) M-1. The thermodynamic values for thyroxine binding to thyroxine-binding globulin at 37 degrees and pH 7.4 were deltaG0 = -14.1 kcal/mole, deltaH0 = -8.96 kcal/mole, and deltaS0 = +16.7 cal degree-1 mole-1. For triiodothyronine at 37 degrees, the thermodynamic values for binding at the primary binding site were deltaG0 = -12.3 kcal/mole, deltaH0 = -11.9 kcal/mole, and deltaS0 = +1.4 cal degree-1 mole-1. Measurement of the pH dependence of binding indicated that both thyroxine and triiodothyronine were bound maximally in the region of physiological pH, pH 6.8 to 7.7.  相似文献   

5.
J A Cox  M Milos    M Comte 《The Biochemical journal》1987,246(2):495-502
Two molecules of gramicidin S, a very rigid cyclic decapeptide rich in beta-sheet structure, can bind in a Ca2+-dependent way to a calmodulin molecule in the presence as well as in the absence of 4 M-urea. The flow-microcalorimetric titration of 25 microM-calmodulin with gramicidin S at 25 degrees C is endothermic for 21.3 kJ.mol-1; the enthalpy change is strictly linear up to a ratio of 2, indicating that the affinity constant for binding of the second gramicidin S is at least 10(7) M-1. In 4 M-urea the peptide quantitatively displaces seminalplasmin from calmodulin, as monitored by tryptophan fluorescence. An iterative data treatment of these competition experiments revealed strong positive co-operativity with K1 less than 5 X 10(5) M-1 and K1.K2 = 2.8 X 10(12) M-2. A competition assay with the use of immobilized melittin enabled us to monitor separately the binding of the second gramicidin S molecule: the K2 value is 1.9 X 10(7) M-1. By complementarity, the K1 value is 1.5 X 10(5) M-1. In the absence of urea the seminalplasmin displacement is incomplete: the data analysis shows optimal fitting with K1 less than 2 X 10(4) M-1 and K1.K2 = 3.2 X 10(11) M-2 and reveals that the mixed complex (calmodulin-seminalplasmin-gramicidin S) is quite stable and is even not fully displaced from calmodulin at high concentrations of gramicidin S. The activation of bovine brain phosphodiesterase by calmodulin is not impaired up to 0.2 microM-gramicidin S. According to our model the ternary complex enzyme-calmodulin-gramicidin is relatively important and displays the same activity as the binary complex enzyme-calmodulin. Gramicidin S also displaces melittin from calmodulin synergistically, as monitored by c.d. Our studies with gramicidin S reveal the importance of multipoint attachments in interactions involving calmodulin and confirm the heterotropic co-operativity in the binding of calmodulin antagonists first demonstrated by Johnson [(1983) Biochem. Biophys. Res. Commun. 112, 787-793].  相似文献   

6.
Vitamin K-dependent protein S is shown to contain four very high affinity Ca2(+)-binding sites. The number of sites and their affinities were determined from Ca2+ titration in the presence of the chromophoric chelator Quin 2. In 0.15 M NaCl, pH 7.5, the four macroscopic binding constants are K1 greater than or equal to 1 x 10(8) M-1, K2 = 3 +/- 2 x 10(7) M-1, K3 = 4 +/- 2 x 10(6) M-1, and K4 = 9 +/- 4 x 10(5) M-1. At low ionic strength, the corresponding values are K1 greater than or equal to 2 x 10(9) M-1, K2 = 9 +/- 4 x 10(8) M-1, K3 = 2 +/- 1 x 10(8) M-1, and K4 = 9 +/- 4 x 10(7) M-1. To localize the Ca2(+)-binding sites, protein S was subjected to proteolysis using lysyl endopeptidase. This yielded a 20-21-kDa fragment which comprised the third and fourth epidermal growth factor (EGF)-like domains and remained high affinity Ca2(+)-binding site(s). The susceptibility of the EGF-like domains to proteolysis increased when Ca2+ was removed from protein S indicating that the Ca2+ binding is important for the stability and/or conformation of the EGF domains. Three of the four EGF-like domains in protein S contain beta-hydroxyasparagine. In each of these domains there is a cluster of three or four negatively charged amino acid residues which are likely to contribute to the extraordinary high Ca2+ affinity. From sequence homology it is suggested that this novel type of high affinity Ca2(+)-binding site is present in several other proteins, e.g. in the EGF-like domains in the low sensity lipoproteins receptor, thrombomodulin, the Notch protein of Drosophila melanogaster, and transforming growth factor beta 1-binding protein.  相似文献   

7.
The kinetics of association of Escherichia coli 30S and 50S ribosomal subunits have been carried out as a function of temperature after a magnesium jump from 1.5 to 3 mM. Turbidimetric recordings combined with a stopped-flow apparatus were used to follow the kinetics. The data show that the rates of formation and dissociation of the 70S particles at 3 mM Mg2+ and +25 degrees C were, respectively: k2 = 10(5) M-1 s-1, k1 = 4,5 X 10(-3) s-1; lowering the temperature decreases the rate constants with activation energies equal to E2 = 7.5 kcal/mol, E1 = 26.5 kcal/mol and enhances the association equilibrium towards the 70S species with an enthalpy change (delta H degrees assoc = -19.9 kcal/mol) dominant over the entropy change (delta S degrees assoc = -33 cal/(deg mol)). These thermodynamic parameters were compared to those obtained from studies on the interactions of codon-anticodon in yeast phenylalanine transfer RNA as well as of ribooligonucleotides. The kinetic and thermodynamic data are shown to be consistent with 16S-23S RNA interaction.  相似文献   

8.
We have measured the binding isotherms of C--A--C--C--A(3'NH)-[14C]Phe to the 70S ribosomes and 50S subunits of Escherichia coli and proposed a theoretical model for adsorption when cooperative interaction occurs between ligands that are adsorbed on ribosomes. Analysis of the experimental binding isotherms leads to the following conclusions. A ribosome (or subunit) binds two C--A--C--C--A(3'NH)-Phe molecules. The binding of C--A--C--C--A(3'NH)-Phe to a ribosome (or subunit) is a cooperative process, characterized by a cooperativity coefficient tau = 40 +/- 5 or more. The binding of C--A--C--C--A(3'NH)-AcPhe at the donor site of the peptidyltransferase center (association binding constant 1.5 X 10(6) M-1) and the binding of puromycin at the acceptor site also occur cooperatively with a coefficient of 10-25, the association binding constant of puromycin at the acceptor site being (1-2) X 10(4) M-1. The puromycin association binding constant at the donor site multiplied by the cooperativity coefficient of two interacting puromycin molecules absorbed on a ribosome equals 100-200 M-1.  相似文献   

9.
Fluorescent techniques were used to study binding of peptide elongation factor Tu (EF-Tu) to Escherichia coli ribosomes and to determine the distances of the bound factor to points on the ribosome. Thermus thermophilus EF-Tu was labeled with 3-(4-maleimidylphenyl)-4-methyl-7-(diethyl-amino)coumarin (CPM) without loss of activity. In the presence of Phe-tRNA and a nonhydrolyzable analogue of GTP, 70S ribosomes bind the CPM-EF-Tu [Kb = (3 +/- 1.2) X 10(6) M-1] causing a decrease of CPM fluorescence. Binding of CPM-EF-Tu to 50S subunits was at least 1 order of magnitude lower than with 70S ribosomes, and binding to 30S subunits could not be detected. Reconstituted 70S ribosomes containing either S1 labeled with fluoresceinmaleimide or ribosomal RNAs labeled at their 3' ends with fluorescein thiosemicarbazide were used for energy transfer from CPM-EF-Tu. The distances between CPM-EF-Tu bound to the ribosomes and the 3' ends of 16S RNA, 5S RNA, 23S RNA, and the closest sulfhydryl group of S1 were calculated to be 82, 70, 73, and 62-68 A, respectively.  相似文献   

10.
The interaction of the ribosomal protein S1 from E. coli MRE 600 with oligonucleotides was studied by hydrodynamic, spectrophotometric, and kinetic methods. UV-difference spectra which are induced by the complex formation could be separated into a hyperchromic contribution originating from the nucleic acid moiety and a hypochromic contribution from the protein. Systematic determination of binding and rate constants was carried out by the temperature-jump relaxation technique. From the quantitative evaluation of the relaxation times and the relaxation amplitudes, the following conclusions could be drawn: The stoichiometry of the complex formation is one mole S1 per one mole oligonucleotide. The binding constant K, the recombination rate constant kR, and the dissociation rate constant kD, respectively, were measured at different temperatures. The values at 10 degrees C are K = 2 x 10(6) M-1, kR = 1.3 x 10(8) M-1S-1, kD = 65 s-1 for A(pA) 12 and K = 7.5 x 10(5) M-1, kR = 6.8 x 10(7) M-1S-1, kD = 90 S-1 for U(pU) 12. Discrepancies with data reported elsewhere are discussed. The stacking-unstacking equilibrium of the free oligonucleotide is frozen if the oligonucleotide is bound to the protein. The conformational change of the oligonucleotide does not occur in the form of a preequilibrium, but is induced after the primary binding step.  相似文献   

11.
The calcium binding properties of non-activated phosphorylase kinase at pH 6.8 have been studied by the gel filtration technique at calcium concentrations from 50 nM to 50 muM. Taking into account the subunit structure alpha4beta4gamma4 the enzyme binds 12 mol Ca2+ per mol with an association constant of 6.0 X 10(7) M-1, 4 mol with an association constant of 1.7 X 10(6) M-1 and 36 mol with a binding constant of 3.9 X 10(4) M-1 at low ionic strength. In buffer of high ionic strength, i.e. 180 mM NH4Cl or 60 mM (NH4)2SO4, only a single set of eight binding sites with a binding constant of 5.5 X 10(7) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. From these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. from these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1. Additionally, 10 mM Mg2+ induces a set of four new Ca2+ binding sites which show positive cooperativity. Their half-saturation constant under the conditions described is 3.5 X 10(5) M-1, and they, too, exhibit competition between Ca2+ and Mg2+. Since this set of sites is induced by Mg2+ a third group of binding sites for the latter metal must be postulated.  相似文献   

12.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

13.
D J Goss  D J Rounds 《Biochemistry》1988,27(10):3610-3613
The rate constants for eucaryotic initiation factor 3 (eIF3) association and dissociation with 40S ribosomal subunits and 80S monosomes have been determined. These rate constants were determined by laser light scattering with unmodified eIF3. The affinity of eIF3 for 40S subunits is about 30-fold greater than for 80S ribosomes. This difference in affinity resides mainly in the association rate constants. Rate constants of 8.8 X 10(7) and 7.3 X 10(6) M-1 s-1 were obtained for eIF3 binding to 40S subunits and 80S ribosomes, respectively. From thermodynamic cycles, the affinity of eIF3-40S subunits for 60S subunits is about 30-fold lower than free 40S subunits for 60S subunits. A calculation shows that under these conditions and assuming simple equilibria, approximately 12% of ribosomal subunits would associate via a reaction of 40S-eIF3 with 60S subunits as opposed to a path where eIF3 dissociates from the 40S subunits prior to association with 60S subunits.  相似文献   

14.
1. The ribosomal subunits of one thermoacidophilic archaebacterium (Caldariella acidophila) and of two reference eubacterial species (Bacillus acidocaldarius, Escherichia coli) were compared with respect to ribosome mass and protein composition by (i) equilibrium-density sedimentation of the particles in CsCl and (ii) gel-electrophoretic estimations of the molecular weights of the protein and the rRNA. 2. By either procedure, it is estimated that synthetically active archaebacterial 30S subunits (52% protein by wt.) are appreciably richer in protein than the corresponding eubacterial particles (31% protein by wt.) 3. The greater protein content of the archaebacterial 30S subunits is accounted for by both a larger number and a greater average molecular weight of the subunit proteins; specifically, C. acidophila 30S subunits yield 28 proteins whose combined mass is 0.6 X 10(6) Da, compared with 20 proteins totalling 0.35 X 10(6) Da mass for eubacterial 30S subunits. 4. No differences in protein number are detected among the large subunits, but C. acidophila 50S subunits exhibit a greater number-average molecular weight of their protein components than do eubacterial 50S particles. 5. Particle weights estimated by either buoyant-density data, or molecular weights of rRNA plus protein, agree to within less than 2%. By either procedure C. acidophila 30S subunits 1.15 X 10(6) Da mass) are estimated to be about 300 000 Da heavier than their eubacterial counterparts (0.87 X 10(6) Da mass); a smaller difference. 0.15 X 10(6) Da, exists between the archaebacterial and the eubacterial 50S subunits (respectively 1.8 X 10(6) and 1.65 X 10(6) Da). It is concluded that the heavier-than-eubacterial mass of the C. acidophila ribosomes resides principally in their smaller subunits.  相似文献   

15.
L-Fucose, D-mannose-specific lectin (SFL 100-2) particles produced by Streptomyces no. 100-2 were labeled with N-succinimidyl-[2,3-3H]propionate to investigate quantitatively their binding properties to human erythrocytes. The labeling did not influence the physical properties or the hemagglutinating activity of the lectin particles. The binding studies suggested that two kinds of receptor sites were present on the erythrocytes. Association constants (Ka's) of the lectin particles to the receptor sites and the numbers of the receptor sites (n) on human O erythrocytes were calculated to be 4.60 X 10(8) M-1 and 3.17 X 10(4)/cell for high-affinity receptor sites, and 7.5 X 10(7) M-1 and 1.33 X 10(5)/cell for low-affinity ones. The inhibition constants (Ki's) for L-fucose, p-nitrophenyl (PNP)-beta-L-fucoside, D-mannose, and PNP-alpha-D-mannoside were calculated to be 1.20 X 10(3), 1.82 X 10(3), 1.82 X 10(2), and 2.40 X 10(2) M-1, respectively. The numbers of carbohydrate-binding sites (m) on the lectin particles were estimated to be 2.82, 2.18, 2.19, and 2.21 for L-fucose, PNP-beta-L-fucoside, D-mannose, and PNP-alpha-D-mannoside, respectively, suggesting that SFL 100-2 has two carbohydrate-binding sites per particle.  相似文献   

16.
70 S Escherichia coli ribosomes were reacted with the fluorescent dye N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid for 10 min under mild conditions. The resulting ribosomes were fully active. 30 S subunits isolated from these particles were also fully active. They contain approximately 0.7 eq of fluorescent dye. Nearly all of it is attached to protein S18. Competitive reaction with N-ethylmaleimide implies that the fluorescent dye is located at cysteine 10 of the protein. The labeled 30 S particles will recombine with 50 S subunits to form stable 70 S particles. Thus the procedures we have developed allow the large scale preparation of an active fluorescent conjugate of the 70 S ribosome. The fluorescence of the 70 S particles is sensitive to the binding of mRNA, showing both quenching and a shift in emission spectra. Thus it affords a simple way to quantitate mRNA binding directly. In pilot studies without tRNA, the binding constant of the initiation triplet codon adenylyl-(3' leads to 5')-uridylyl-(3' leads to 5')-guanosine to 70 S ribosome was found to be an order of magnitude larger than that of polyuridylic acid.  相似文献   

17.
The binding of estradiol-17 beta (E2), diethylstilbestrol (DES), and polyene fatty acids, in particular arachidonate (C20:4), to alpha 1-fetoprotein (alpha-FP) and albumin purified from mouse embryo sera was studied using equilibrium dialysis and electrophoretic techniques. E2, arachidonate, and DES all bind to alpha-FP, but with decreasing strength. E2 is a high affinity, low capacity ligand (Ka approximately 0.8 X 10(8) M-1 and approximately 0.3 sites/mol of alpha-FP at 25 degrees C); arachidonate is a weaker ligand disposing of more sites (Ka approximately 0.3 X 10(7) M-1 and 4-5 sites/mol of alpha-FP); the binding of DES is of comparatively low affinity and capacity (Ka approximately 0.2 X 10(7) M-1 and n approximately 0.7/mol of alpha-FP). In spite of different structures and equilibrium parameters, E2, DES, and arachidonate are able to compete with each other for binding to the fetoprotein. The C22:4 and C22:6 fatty acids are also efficient concentration-dependent inhibitors of E2 or DES binding. Albumin binds the fatty acids and DES, but equilibrium parameters are different from those of alpha-FP. In particular, arachidonate is a better ligand for albumin, where it interacts with at least two classes of apparent sites (Ka1 approximately 0.3 X 10(8) M-1 and n1 approximately 1; Ka2 approximately 0.2 X 10(7) M-1 and n2 approximately 30). In contrast to alpha-FP, albumin virtually does not bind E2. Also, no competition could be demonstrated between DES and fatty acid ligands for binding to albumin. None of the studied interactions, with either albumin or alpha-FP, was modified even by high doses of bilirubin. The possible functions of the various binding activities present in fetal sera in the process of growth are discussed.  相似文献   

18.
We have previously reported the development of a technique utilizing nitrocellulose filters, which rapidly separates ribosomal protein-ribosomal RNA complexes from unbound protein. We have used this technique to obtain binding data for the association of proteins S4, S7, S8, S15, S17, and S20 with 16S RNA. With the exception of protein S17, the association behavior for each of these proteins exhibits a single binding site with a unique binding constant. The apparent association constants have been calculated and have been found to have a range from 1.6 x 10(6) M-1 for protein S7 to 7.1 x 10(7) M-1 for protein S17. The Scatchard plot for the protein S17 binding data is biphasic, suggesting that within the RNA population two different binding sites exist, each with a different apparent association constant.  相似文献   

19.
The interaction of pirprofen enantiomers with human serum albumin (HSA) was investigated by means of high-performance liquid chromatography (HPLC), circular dichroism (CD), and 1H NMR spectroscopy. HPLC experiments indicated that both pirprofen enantiomers were bound to one class of high-affinity binding sites (n(+) = 1.91 +/- 0.13, K(+) = (4.09 +/- 0.64) x 10(5) M-1, n(-) = 2.07 +/- 0.13, K(-) = (6.56 +/- 1.35) x 10(5) M-1) together with nonspecific binding (n'K'(+) = (1.51 +/- 0.21) x 10(4) M-1, n'K'(-) = (0.88 +/- 0.13) x 10(-4) M-1). Slight stereoselectivity in specific binding was demonstrated by the difference in product n(+)K(+) = (0.77 +/- 0.08) x 10(6) M-1 vs. n(-)K(-) = (1.30 +/- 0.21) x 10(6) M-1, i.e., the ratio n(-)K(-)/n(+)K(+) = 1.7. CD measurements showed changes in the binding sites located on the aromatic amino acid side chains (a small positive band at 315 nm and a pronounced negative extrinsic Cotton effect in the region 250-280 nm). The protein remains, however, in its predominantly alpha-helical conformation. The 1H NMR difference spectra confirmed that both pirprofen enantiomers interacted with HSA specifically, most probably with site II on the albumin molecule.  相似文献   

20.
The binding of triton X-100 to bovine serum albumin has been shown to exhibit positive cooperativity. Subsequent equilibrium dialysis studies indicate that the binding of Triton X-100 to sheep serum albumin likewise shows positive cooperativity, the first two stepwise equilibrium constants being K1 = 1.24 X 10(4) M-1 and K2 = 1.62 X 10(4) M-1. However, the mechanism for Triton X-100 binding to human serum albumin differs in that the binding isotherm indicates the binding sites are independent and identical. In the latter case the binding is described by the Scatchard model with an equilibrium constant of K = 7.2 X 10(3) M-1. The studies were conducted at 16 degrees C in pH 7.0, I = 0.05 phosphate buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号