首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Roles of P2 receptors in glial cells: focus on astrocytes   总被引:1,自引:0,他引:1  
Central nervous system glial cells release and respond to nucleotides under both physiological and pathological conditions, suggesting that these molecules play key roles in both normal brain function and in repair after damage. In particular, ATP released from astrocytes activates P2 receptors on astrocytes and other brain cells, allowing a form of homotypic and heterotypic signalling, which also involves microglia, neurons and oligodendrocytes. Multiple P2X and P2Y receptors are expressed by both astrocytes and microglia; however, these receptors are differentially recruited by nucleotides, depending upon specific pathophysiological conditions, and also mediate the long-term trophic changes of these cells during inflammatory gliosis. In astrocytes, P2-receptor-induced gliosis occurs via activation of the extracellular-regulated kinases (ERK) and protein kinase B/Akt pathways and involves induction of inflammatory and anti-inflammatory genes, cyclins, adhesion and antiapoptotic molecules. While astrocytic P2Y1 and P2Y2,4 are primarily involved in short-term calcium-dependent signalling, multiple P2 receptor subtypes seem to cooperate to astrocytic long-term changes. Conversely, in microglia, exposure to inflammatory and immunological stimuli results in differential functional changes of distinct P2 receptors, suggesting highly specific roles in acquisition of the activated phenotype. We believe that nucleotide-induced activation of astrocytes and microglia may originally start as a defence mechanism to protect neurons from cytotoxic and ischaemic insults; dysregulation of this process in chronic inflammatory diseases eventually results in neuronal cell damage and loss. On this basis, full elucidation of the specific roles of P2 receptors in these cells may help exploit the beneficial neuroprotective features of activated glia while attenuating their harmful properties and thus provide the basis for novel neuroprotective strategies that specifically target the purinergic system.  相似文献   

3.
Growing lines of evidence suggests that high mobility group box-1 (HMGB1) plays an important role for promoting inflammation and apoptosis in brain ischemia. Previously, we demonstrated that inducers of heme oxygenase-1 (HO-1) significantly reduce HMGB1 release in inflammatory conditions in vitro and in vivo. Thus, we tested our hypothesis that higenamine protects brain injury by inhibition of middle cerebral artery occlusion (MCAO)-mediated HMGB1 release in vivo, and glucose/glucose oxidase (GOX)-induced apoptosis in C6 cells in vitro due to HO-1 induction. Higenamine increased HO-1 expression in C6 cells in both hypoxia and normoxia, in which the former was much more significant than the latter. Higenamine increased Nrf-2 luciferase activity, translocated Nrf-2 to nucleus, and increased phosphorylation of Akt in C6 cells. Consistent with this, LY 294002, a PI3K inhibitor, inhibited HO-1 induction by higenamine and apoptosis induced by glucose/GOX in C6 cells was prevented by higenamine, which effect was reversed by LY 294002. Importantly, administration of higenamine (i.p) significantly reduced brain infarct size, mortality rate, MPO activity and tissue expression of HMGB1 in MCAO rats. In addition, recombinant high mobility group box 1 induced apoptosis in C6 cells by increasing ratio of Bax/bcl-2 and cleaved caspase c, which was inhibited by higenamine, and all of these effects were reversed by co-treatment with ZnPPIX. Therefore, we conclude that higenamine, at least in part, protects brain cells against hypoxic damages by up-regulation of HO-1. Thus, higenamine may be beneficial for the use of ischemic injuries such as stroke.  相似文献   

4.
Cerebral ischemia/reperfusion is known to activate endogenous neural stem/progenitor cell (NS/PC) proliferation, but the mechanisms leading to NS/PC proliferation remain unknown. Astrocytes are vital components of the neurogenic niche and play a crucial role in regulating NS/PC proliferation and differentiation. After focal cerebral ischemia/reperfusion (I/R), astrocytes release a damage-associated molecular-pattern molecule called high-mobility group box 1 (HMGB1). Since HMGB1 is critical for NS/PC proliferation during brain development, we modeled I/R using glucose deprivation/reperfusion (OGD/R) in vitro and examined the effect of HMGB1 released by astrocytes on NS/PC proliferation. Further, we determined the role of the PI3K/Akt signaling pathway in this process. Using conditioned media from OGD/R astrocytes with or without RNA interference for HMGB1, as well as with anti-HMGB1 antibodies, we evaluated the effect of astrocyte-derived HMGB1 on NS/PC proliferation. Using the potent PI3K/Akt inhibitor, LY294002, we explored the likely mechanism of HMGB1-induced NS/PC proliferation. OGD/R astrocyte-conditioned media (ACM) increased NS/PC proliferation, and HMGB1 RNA interference prevented this effect. Using an HMGB1 neutralizing antibody in OGD/R ACM also abrogated NS/PC proliferation. LY294002 effectively reduced phospho-Akt levels and reduced NS/PC proliferation induced by HMGB1 in vitro. Our data demonstrate that HMGB1 released by OGD/R astrocytes promotes NS/PC proliferation through activation of the PI3K/Akt signaling pathway. Local HMGB1 release may induce endogenous NS/PC to proliferate following cerebral I/R and suggests that HMGB1 may play a pivotal role in brain tissue repair after an ischemic event.  相似文献   

5.
High mobility group box 1 (HMGB1), an important inflammatory mediator, is actively secreted by immune cells and some non‐immune cells or passively released by necrotic cells. HMGB1 has been implicated in many inflammatory diseases. Our previous published data demonstrated that HMGB1 was up‐regulated in heart tissue or serum in experimental autoimmune myocarditis (EAM); HMGB1 blockade could ameliorate cardiac fibrosis at the last stage of EAM. And yet, until now, no data directly showed that HMGB1 was associated with cardiac fibrosis. Therefore, the aims of the present work were to assess whether (1) up‐regulated HMGB1 could directly lead to cardiac fibrosis in EAM; (2) cardiac fibroblast/myofibroblasts could secrete HMGB1 as another source of high‐level HMGB1 in EAM; and (3) HMGB1 blockade could effectively prevent cardiac fibrosis at the last stage of EAM. Our results clearly demonstrated that HMGB1 could directly lead to cardiac collagen deposition, which was associated with PKCβ/Erk1/2 signalling pathway; furthermore, cardiac fibroblast/myofibroblasts could actively secrete HMGB1 under external stress; and HMGB1 secreted by cardiac fibroblasts/myofibroblasts led to cardiac fibrosis via PKCβ activation by autocrine means; HMGB1 blockade could efficiently ameliorate cardiac fibrosis in EAM mice.  相似文献   

6.
High‐mobility group box 1 (HMGB1) was initially described as a damage‐associated‐molecular‐pattern (DAMP) mediator that worsens acute brain injury after stroke. But, recent findings suggest that HMGB1 can play a surprisingly beneficial role during stroke recovery by promoting endothelial progenitor cell (EPC) function and vascular remodeling in cortical gray matter. Here, we ask whether HMGB1 may also influence EPC responses in white matter injury. The standard lysophosphatidylcholine (LPC) injection model was used to induce focal demyelination in the corpus callosum of mice. Immunostaining showed that within the focal white matter lesions, HMGB1 was up‐regulated in GFAP‐positive reactive astrocytes, along with the accumulation of Flk1/CD34‐double‐positive EPCs that expressed pro‐recovery mediators such as brain‐derived neurotrophic factor and basic fibroblast growth factor. Astrocyte–EPC signaling required the HMGB1 receptor RAGE as treatment with RAGE‐neutralizing antibody significantly decreased EPC accumulation. Moreover, suppression of HMGB1 with siRNA in vivo significantly decreased EPC numbers in damaged white matter as well as proliferated endothelial cell numbers. Finally, in vitro cell culture systems confirmed that HMGB1 directly affected EPC function such as migration and tube formation. Taken together, our findings suggest that HMGB1 from reactive astrocytes may attract EPCs to promote recovery after white matter injury.  相似文献   

7.
高迁移率族蛋白B1(High mobility group box protein 1, HMGB1)属于晚期细胞因子,与炎症反应相关。为研究香鱼HMGB1在鳗利斯顿氏菌感染引起的炎症反应中的作用,采用随机测序从肝脏组织cDNA文库中获得HMGB1基因,全长1233 bp,编码一个由204个氨基酸组成的23.3 kDa的蛋白。分析表明,该蛋白与胡瓜鱼HMGB1蛋白同源性最高。健康香鱼HMGB1基因在肌肉、脑和肝脏组织中表达量最高,而在鳃和肠中几乎不表达。 qRT-PCR表明,鳗利斯顿氏菌感染过程中,香鱼肌肉、脑和肝脏组织中HMGB1基因表达显著上调,分别在72、48 h达到峰值。原核表达香鱼HMGB1重组蛋白并制备抗血清,Western blot显示,抗血清能与目的蛋白起特异性反应,能用于研究HMGB1蛋白表达变化,进一步揭示HMGB1基因与鳗利斯顿氏菌感染引起的炎症晚期反应相关性。  相似文献   

8.
High-mobility group box 1 (HMGB1) protein: friend and foe   总被引:11,自引:0,他引:11  
  相似文献   

9.
Activated astroglial cells are implicated in neuropathogenesis of many infectious and inflammatory diseases of the brain. A number of inflammatory mediators and cytokines have been proposed to play a key role in glial cell-related brain damage. Cytokine production seems to be initiated by signaling through TLR4/type I IL-1R (IL-1RI) in response to their ligands, LPS and IL-1beta, playing vital roles in innate host defense against infections, inflammation, injury, and stress. We have shown that glial cells are stimulated by ethanol, up-regulating cytokines and inflammatory mediators associated with TLR4 and IL-1RI signaling pathways in brain, suggesting that ethanol may contribute to brain damage via inflammation. We explore the possibility that ethanol, in the absence of LPS or IL-1beta, triggers signaling pathways and inflammatory mediators through TLR4 and/or IL-1RI activation in astrocytes. We show in this study that ethanol, at physiologically relevant concentrations, is capable of inducing rapid phosphorylation within 10 min of IL-1R-associated kinase, ERK1/2, stress-activated protein kinase/JNK, and p38 MAPK in astrocytes. Then an activation of NF-kappaB and AP-1 occurs after 30 min of ethanol treatment along with an up-regulation of inducible NO synthase and cyclooxygenase-2 expression. Finally, we note an increase in cell death after 3 h of treatment. Furthermore, by using either anti-TLR4- or anti-IL-1RI-neutralizing Abs, before and during ethanol treatment, we inhibit ethanol-induced signaling events, including NF-kappaB and AP-1 activation, inducible NO synthase, and cyclooxygenase-2 up-regulation and astrocyte death. In summary, these findings indicate that both TLR4 and IL-1RI activation occur upon ethanol treatment, and suggest that signaling through these receptors mediates ethanol-induced inflammatory events in astrocytes and brain.  相似文献   

10.
Astroglial cells are involved in the neuropathogenesis of several inflammatory diseases of the brain, where the activation of inflammatory mediators and cytokines plays an important role. We have previously demonstrated that ethanol up-regulates inflammatory mediators in both brain and astroglial cells. Since Rho GTPases are involved in inflammatory responses of astrocytes where loss of stress fibers takes place and RhoE/Rnd3 disorganizes the actin cytoskeleton, the aim of the present study was to investigate the implication of this protein in the stimulation of inflammatory signaling induced by ethanol. Our findings show that RhoE expression induces a decrease in both RhoA and Rac. In addition, RhoE not only induces actin cytoskeleton disorganization but it also stimulates both the IRAK/ERK/NF-kappaB pathway and the COX-2 expression associated with the inflammatory response in these cells. Our results also show that ethanol exposure induces RhoE signaling in astrocytes. Preincubation of astrocytes with GF109203X, an inhibitor of PKCs, reduces the RhoE levels and abolishes the ethanol-induced activation of IRAK, NF-kappaB and the COX-2 expression. Furthermore, RhoE overexpression restores ethanol responses in astrocytes treated with the PKCs inhibitor. Altogether, our findings suggest that this small GTPase is involved in the stimulation of the inflammatory signaling induced by ethanol in astrocytes. These findings provide new insights into the molecular mechanism involved in the inflammatory responses in astrocytes.  相似文献   

11.
Soluble factors released by intra-cerebral activated cells are implicated in neuronal alterations during central nervous system inflammatory diseases. In this study, the role of the CD23 pathway in astrocyte activation and its participation in human immunodeficiency virus-1 (HIV-1)-induced neuropathology were evaluated. In human primary astrocytes, CD23 protein membrane expression was dose-dependently upregulated by gp120. It was also upregulated by gamma-interferon (gamma-IFN) and modulated by interleukin-1-beta (IL-1beta) whereas microglial cells in these stimulation conditions did not express CD23. Cell surface stimulation of CD23 expressed by astrocytes induced production of nitric oxide (NO) and IL-1beta which was inhibited by a specific inducible NO-synthase (iNOS) inhibitor (aminoguanidine), indicating the implication of this receptor in the astrocyte inflammatory reaction. On brain tissues from five out of five patients with HIV-1-related encephalitis, CD23 was expressed by astrocytes and by some microglial cells, whereas it was not detectable on brain tissue from five of five HIV-1-infected patients without central nervous system (CNS) disease or from two of two control subjects. In addition, CD23 antigen was co-localized with iNOS and nitrotyrosine on brain tissue from patients with HIV1-related encephalitis, suggesting that CD23 participates in iNOS activation of astrocytes in vivo. In conclusion, CD23 ligation is an alternative pathway in the induction of inflammatory product synthesis by astrocytes and participates in CNS inflammation.  相似文献   

12.
13.
Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts. Additionally, we found that eritoran is protective in liver I/R through inhibition of high-mobility group box protein B1 (HMGB1)-mediated inflammatory signaling. When eritoran was administered in conjunction with recombinant HMGB1 during liver I/R, there was significantly less injury, suggesting that eritoran blocks the HMGB1–TLR4 interaction. Not only does eritoran attenuate TLR4-dependent HMGB1 release in vivo, but this TLR4 antagonist also dampened HMGB1’s release from hypoxic hepatocytes in vitro and thereby weakened HMGB1’s activation of innate immune cells. HMGB1 signaling through TLR4 makes an important contribution to the inflammatory response seen after liver I/R. This study demonstrates that novel blockade of HMGB1 by the TLR4 antagonist eritoran leads to the amelioration of liver injury.  相似文献   

14.
Unresolved inflammation maintained by release of danger‐associated molecular patterns, particularly high‐mobility group box‐1 (HMGB1), is crucial for hepatocellular carcinoma (HCC) pathogenesis. To further characterize interactions between leucocytes and necrotic cancerous tissue, a cellular model of necroinflammation was studied in which murine Raw 264.7 macrophages or primary splenocytes were exposed to necrotic lysates (N‐lys) of murine hepatoma cells or primary hepatocytes. In comparison to those derived from primary hepatocytes, N‐lys from hepatoma cells were highly active—inducing in macrophages efficient expression of inflammatory cytokines like C‐X‐C motif ligand‐2 , tumor necrosis factor‐α, interleukin (IL)‐6 and IL‐23‐p19. This activity associated with higher levels of HMGB1 in hepatoma cells and was curbed by pharmacological blockage of the receptor for advanced glycation end product (RAGE)/HMGB1 axis or the mitogen‐activated protein kinases ERK1/2 pathway. Analysis of murine splenocytes furthermore demonstrated that N‐lys did not comprise of functionally relevant amounts of TLR4 agonists. Finally, N‐lys derived from hepatoma cells supported inflammatory splenic Th17 and Th1 polarization as detected by IL‐17, IL‐22 or interferon‐γ production. Altogether, a straightforward applicable model was established which allows for biochemical characterization of immunoregulation by HCC necrosis in cell culture. Data presented indicate a remarkably inflammatory capacity of necrotic hepatoma cells that, at least partly, depends on the RAGE/HMGB1 axis and may shape immunological properties of the HCC microenvironment.  相似文献   

15.
16.
High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the spinal cord dorsal horn. Thus, it is possible that the anti-HMGB1 antibody could also be efficacious in attenuating peripheral nerve injury-induced pain. Following partial sciatic nerve ligation (PSNL), rats were treated with either anti-HMGB1 or control IgG. Intravenous treatment with anti-HMGB1 monoclonal antibody (2 mg/kg) significantly ameliorated PSNL-induced hind paw tactile hypersensitivity at 7, 14 and 21 days, but not 3 days, after ligation, whereas control IgG had no effect on tactile hypersensitivity. The expression of HMGB1 protein in the spinal dorsal horn was significantly increased 7, 14 and 21 days after PSNL; the efficacy of the anti-HMGB1 antibody is likely related to the presence of HMGB1 protein. Also, the injury-induced translocation of HMGB1 from the nucleus to the cytosol occurred mainly in dorsal horn neurons and not in astrocytes and microglia, indicating a neuronal source of HMGB1. Markers of astrocyte (glial fibrillary acidic protein (GFAP)), microglia (ionized calcium binding adaptor molecule 1 (Iba1)) and spinal neuron (cFos) activity were greatly increased in the ipsilateral dorsal horn side compared to the sham-operated side 21 days after PSNL. Anti-HMGB1 monoclonal antibody treatment significantly decreased the injury-induced expression of cFos and Iba1, but not GFAP. The results demonstrate that nerve injury evokes the synthesis and release of HMGB1 from spinal neurons, facilitating the activity of both microglia and neurons, which in turn leads to symptoms of neuropathic pain. Thus, the targeting of HMGB1 could be a useful therapeutic strategy in the treatment of chronic pain.  相似文献   

17.
18.
Fingolimod (FTY720) is used as an immunosuppressant for multiple sclerosis. Numerous studies indicated its neuroprotective effects in stroke. However, the mechanism remains to be elucidated. This study was intended to investigate the mechanisms of phosphorylated FTY720 (pFTY720), which was the principle active molecule in regulating astrocyte‐mediated inflammatory responses induced by oxygen‐glucose deprivation (OGD). Results demonstrated that pFTY720 could protect astrocytes against OGD‐induced injury and inflammatory responses. It significantly decreased pro‐inflammatory cytokines, including high mobility group box 1 (HMGB1) and tumour necrosis factor‐α (TNF‐α). Further, studies displayed that pFTY720 could prevent up‐regulation of Toll‐like receptor 2 (TLR2), phosphorylation of phosphoinositide 3‐kinase (PI3K) and nuclear translocation of nuclear factor kappa B (NFκB) p65 subunit caused by OGD. Sphingosine‐1‐phosphate receptor 3 (S1PR3) knockdown could reverse the above change. Moreover, administration of TLR2/4 blocker abolished the protective effects of pFTY720. Taken together, this study reveals that pFTY720 depends on S1PR3 to protect astrocytes against OGD‐induced neuroinflammation, due to inhibiting TLR2/4‐PI3K‐NFκB signalling pathway.  相似文献   

19.
Glycyrrhizin (GL), a triterpene present in the roots and rhizomes of licorice (Glycyrrhiza glabra), has been shown to have anti-inflammatory and anti-viral effects. In our previous reports, we demonstrated the neuroprotective effects of GL in the postischemic brain and in kainic acid (KA)-induced seizure animal model. In this KA-induced seizure model, the systemic administration of GL 30 min before KA administration significantly suppressed neuronal cell death and markedly suppressed gliosis and proinflammatory marker inductions. In the present study, we showed that high-mobility group box 1 (HMGB1), an endogenous danger signal, was induced in hippocampal CA1 and CA3 regions of the same KA-induced model, and peaked at ~3 h and at 6 days post-KA. HMGB1 was transiently induced in neurons and astrocyte at 3 h post-KA, and it was released from dying neurons and accumulated in serum at 12 h post-KA. Furthermore, after ~4 days of almost undetectable levels in the hippocampus, delayed and marked HMGB1 induction was detected at 6 days post-KA, mainly in astrocytes and endothelial cells, in which HMGB1 was localized in nuclei, and not secreted into serum. Interestingly, GL suppressed HMGB1 inductions in hippocampus and also suppressed its release into serum in KA-treated mice. Since we established previously that GL has anti-inflammatory and anti-excitotoxic effects in this KA-induced seizure model, these results indicate that the neuroprotective effect of GL in the KA-injected mouse brain might be attributable to the inhibitions of HMGB1 induction and release, which in turn, mitigates the inflammatory process.  相似文献   

20.
Hypoxia–reperfusion injury is one of the major risk factors for neurodegeneration. However, it is unclear whether ischaemic damage in brain microvascular endothelial cells plays roles in neurodegeneration, particularly in the amyloidogenic changes contributing to the development of Alzheimer’s disease (AD) pathologies. Therefore, we investigated the roles of hypoxia–reoxygenation (H/R)-induced release of high mobility group box protein 1 (HMGB1), a risk molecule for AD pathogenesis in the ischaemic damaged brain, from human brain microvascular endothelial cells (HBMVECs) in neuronal amyloid-beta (Aβ) production. H/R increased nuclear–cytosolic translocation and secretion of HMGB1 in HBMVECs, along with increased permeability and HMGB1-dependent p-c-Jun activation. In addition, H/R increased the expression of Sirtuin 1 (Sirt1), coincident with an increase of intracellular Sirt1–HMGB1 binding in HBMVECs. H/R increased the acetylation of HMGB1 and extracellular secretion, which was significantly inhibited by Sirt1 overexpression. Furthermore, Sirt1 contributed to autophagy-mediated endogenous HMGB1 degradation. More importantly, treatment of neuronal cells with conditioned medium from H/R-stimulated HBMVECs (H/R-CM) activated their amyloidogenic pathways. The neuronal amyloidogenic changes (i.e. increased levels of extracellular Aβ40 and Aβ42) by H/R-CM from HBMVECs were further increased by Sirt1 inhibition, which was significantly suppressed by neutralization of the HMGB1 in H/R-CM. Collectively, our results suggest that HMGB1 derived from H/R-stimulated HBMVECs contributes to amyloidogenic pathways in neurons playing roles in the pathogenesis of AD, which are regulated by endothelial Sirt1.Subject terms: Mechanisms of disease, Cellular neuroscience  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号