首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shuttle vector carrying the origin of SV40 replication, the thymidine kinase (tk) gene of herpes simplex virus and the E. coli xanthine guanine phosphoribosyl transferase (gpt) gene has been introduced into human TK- cells. A transformed cell line containing only one stably integrated copy of the shuttle vector was used to study mutations in the introduced tk gene at the molecular level. Without selection for gpt expression, spontaneous TK- mutants arose at a frequency of approximately 10(-4)/generation, and were caused by deletion of plasmid sequences. However, when selection for expression of the gpt gene was applied, the background level of mutations at the tk gene was below 4.10(-6). From this cell line, TK- mutants were obtained after treatment with N-ethyl-N-nitrosourea (ENU). COS fusion appeared to be an efficient method for rescue and amplification of the integrated shuttle vector from the human chromosome. After further amplification and analysis in E. coli, rescued tk genes were easily identified and were shown to be physically unaltered by the rescue procedure. In contrast to rescued tk genes from TK+ cells, those obtained from the ENU-induced TK- mutants were unable to complement thymidine kinase-negative E. coli cells. Two such tk mutations were mapped in E. coli by marker rescue analysis. A GC----AT transition was the cause of both mutations. We show here that plasmid rescue by COS fusion is a reliable system for studying gene mutations in human cells, since no sequence changes occurred in rescued DNA except for the 2 ENU-induced sequence changes.  相似文献   

2.
Cytotoxicity tests with alloantisera were used to study the expression of HLA-D region antigens in HLA-DR-null mutants of a human lymphoblastoid cell line. The initial cell line contained just one copy of the MHC as a haplotype that included DR1 and MB1/MT1. Gamma ray mutagenesis of the single haplotype cells followed by selection with complement and an anti-DR monoclonal antibody were then used to isolate DR-null mutants. Two categories of mutants were identified with a panel of alloantisera. Expressions of DR1 and MB1/MT1 were simultaneously lost in four mutants. Nine mutants still expressed MB1/MT1 but had lost the expression of DR1. The dissociated loss of expression of MB1/MT1 and DR1 antigens is evidence for separate genetic control of these alloantigens. The methods used exemplify a versatile approach for conveniently inducing separations of closely linked loci of the MHC.  相似文献   

3.
Eleven independent lines of Syrian hamster cells were selected by using very low levels of N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartate transcarbamylase. The protocol employed insured that each resistant cell arose during one of the last divisions before selection was applied. Cells of each mutant line contained an amplification of the structural gene for CAD, a trifunctional protein which includes aspartate transcarbamylase and two other enzymes of UMP biosynthesis. Strikingly, despite the minimal selection employed, the degree of amplification of the CAD gene was 6 to 10 times the normal diploid number in all 11 cases. In situ hybridization indicated that the amplified CAD genes were almost always present at a single chromosomal site in each line. Therefore, one of the two alleles was amplified 11- to 19-fold. The rates at which cells became resistant to PALA, determined by fluctuation analysis, were 100 times less dependent on drug concentration than were the frequencies of resistant cells in steady-state populations. The relatively shallow dependence of this rate upon PALA concentration is consistent with our independent observation that most events gave rise to a similar degree of amplification. In six of six cell lines examined, the levels of CAD mRNA and aspartate transcarbamylase activity were elevated two- to fourfold. These lines were resistant to PALA concentrations 20- to 80-fold higher than the ones used for selection. The organization of amplified DNA was examined by hybridizing Southern blots with cloned DNA fragments containing amplified sequences, previously isolated from two cell lines resistant to high levels of PALA. A contiguous region of DNA approximately 44 kilobases long which included the CAD gene was amplified in five of five single-step mutants examined. Outside this region, these mutants shared amplified sequences with only one of the two highly resistant lines.  相似文献   

4.
Somatic cell genetics and the study of cholesterol metabolism   总被引:1,自引:0,他引:1  
The regulation of cholesterol biosynthesis by extracellular cholesterol occurs both in whole animal tissue and in permanent somatic cell lines in culture. Permanent mammalian cells lines, under optimized growth conditions, are easily manipulated both biochemically and genetically. The Chinese hamster ovary cell line (CHO-K1) is the most widely used cell line for genetic studies. CHO-K1 is a pseudo-diploid mammalian cell exhibiting a short doubling time and a relatively high plating efficiency. Somatic cell mutants can be generated through mutagenesis and also by drug adaptation. Following mutagenesis, auxotrophs may be isolated either by selection or by screening. Most selection procedures for mutants of cholesterol metabolism must be done in serum depleted of cholesterol which requires the endogenous biosynthetic pathway to be intact. Mutants failing to produce cholesterol do not replicate their DNA and exhibit reduced concentrations of cholesterol in their membranes. BUdR and polyene antibiotics have both been used to select against the wild-type cells which incorporate these compounds and are killed, allowing the survival of the mutant cells. Both mevalonate and cholesterol auxotrophs have been isolated with the BUdR technique and have proven useful for elucidation of the early steps in cholesterol biosynthesis, particularly for the ratelimiting enzyme HMG-CoA reductase. Somatic cell fusion of a mutant and wild-type cell followed by chromosomal segregation, routinely used to map human genes, has also been used to map the human gene for HMG-CoA synthase. Such hybrids also provide valuable information on the dominance or recessivity of a specific lesion. DNA-mediated gene transfer into somatic cell mutants allows the selection of DNA sequences which complement the mutation, and is also useful for analysis of regions of regulatory significance. Mutants, resistant to the regulatory effects of oxygenated sterols, can be isolated following mutagenesis. Mutants of this type vary the lipid content of their membranes in response to cholesterol concentration in the medium. All such mutants tested exhibit a pleiotropic regulatory effect on more than one enzyme in the cholesterol biosynthetic pathway. Adaptation to drugs such as compactin and mevinolin, which inhibit HMG-CoA reductase, have been used to produce mutants which overexpress enzymes in the pathway. These amplified cells are useful sources of specific mRNAs for construction of cDNA libraries and gene isolation. Structure-function relationships of membrane sterols can be studied in cholesterol auxotrophs where changes in acyl-chain ordering can be manipulated by exogenous sterols in the medium.  相似文献   

5.
We have used a fluorescence-activated cytotoxicity protocol, 9-(1'-pyrene)nonanol (P9OH)/UV selection (Morand, O. H., Allen, L.-A. H., Zoeller, R. A., and Raetz, C. R. H. (1990) Biochim. Biophys. Acta 1034, 132-141), to isolate a series of plasmalogen-deficient mutants in a murine, macrophage-like cell line, RAW 264.7. Three of these mutants, RAW.7, RAW.12, and RAW.108, displayed varying degrees of plasmalogen deficiency (48, 17, and 14% of wild-type levels, respectively), and all three mutants were deficient in peroxisomal dihydroxyacetone phosphate (DHAP) acyltransferase activity (5% of wild-type). Unlike previously described Chinese hamster ovary (CHO) cell mutants, the RAW mutants contained intact, functional, peroxisomes and normal levels of alkyl-DHAP synthase activity, a peroxisomal, membrane-bound enzyme. In RAW.7 and RAW.108 cells, the loss of peroxisomal DHAP acyltransferase is the primary lesion. RAW.12 displayed not only a deficiency in the DHAP acyltransferase activity, but also displayed a second lesion in the biosynthetic pathway, a deficiency in delta 1'-desaturase activity (plasmanylethanolamine desaturase, EC 1.14.99.19), the final step in plasmenylethanolamine biosynthesis. The deficiencies expressed in the mutants represent unique lesions in plasmalogen biosynthesis. Since the RAW cell line is a macrophage-like responsive cell line, these mutants can be used to examine the role of plasmalogens in cellular functions such as arachidonic acid metabolism, prostaglandin synthesis, protein secretion, and signal transduction.  相似文献   

6.
IA mutant functional antigen-presenting cell lines   总被引:16,自引:0,他引:16  
We describe a protocol for the selection of mutant cells with an altered pattern of Ia antigenic determinants and antigen-presenting properties from a homogeneous population of functional antigen-presenting cells (APC). The APC line used in this work was obtained by fusing lipopolysaccharide-stimulated B cells from (BALB/c x A/J)F1 donors with cells from the M12.4.1 BALB/c B lymphoma cell line. The resulting hybridomas, including TA3, retained the potent antigen-presenting activity of the parental B lymphoma line and expressed Ia antigens and immune response gene-determined antigen-presenting properties of the A/J type. Mutants of TA3 were obtained by subjecting the cells to negative immunoselection with one monoclonal anti-(alpha) 1-Ak antibody and complement followed by positive immunoselection via electronic cell sorting with a second monoclonal alpha I-Ak or alpha I-Ek antibody. Two types of mutants were obtained. One, A8, appeared to have undergone a fairly limited alteration, since it lost only some of the I-Ak antigenic determinants; the second type appeared to have lost the entire I-Ak molecule but to have retained the I-E molecule. Functional studies with the A8 mutant demonstrated that the loss of a limited number of I-Ak determinants correlated with the loss of a specific I-Ak-encoded restriction element, since A8 failed to present a specific antigen, hen egg lysozyme (HEL), to a HEL-specific I-Ak-restricted T cell hybridoma but retained some capacity to present a second antigen, poly(Glu60Ala30Tyr10) (GAT), to a GAT-specific I-Ak-restricted T cell hybridoma. These results indicate that Ia antigens are the products of immune response gene loci. The availability of such mutants should allow an examination of the relationship between the structure of an Ia molecule and the antigens with which it is co-recognized by T cells.  相似文献   

7.
Previous studies from our laboratory have shown that the absence of G1(G1-condition) in two lines of Chinese hamster cells is dominant over the presence of G1(G1+condition) in a variety of intraspecific cell hybrids. G1+ mutants or variants cna be isolated from G1- cells following mutagenesis and selection. These G1+ mutants fall into multiple complementation groups based on their abilities to form G1- cell hybrids with one another. This is evidence that different mutants have G1 intervals for different reasons, possibly as the result of deficiencies in functions necessary for G1- cell cycles. In this report we have used cell hybrid analysis to ask whether cells of different, naturally occurring G1+ lines of Chinese hamster are able to complement to produce G1- hybrids. We have found three complementation groups among the four G1+ cell lines examined. Therefore, these lines define three different reasons or bases for the existence of a G1 interval. These results lead us to suggest that multiple requirements must be met for these cells to start the S period, but that failure to fulfill only a single and different requirement is responsible for the presence of a G1 interval in any given cell line.  相似文献   

8.
During progression of Moloney murine leukemia virus (Mo-MuLV)-induced rat T cell lymphomas, growth selection results in the expansion of cell clones carrying increasing numbers of integrated proviruses. These new provirus insertions reproducibly contribute to enhanced growth, allowing the emergence of cell clones from the initially heterogeneous population of tumor cells. The Mo-MuLV-induced rat T cell lymphoma lines 2780d and 5675d, which are dependent on interleukin-2 (IL-2) for growth in culture (IL-2d), were placed in IL-2-free medium to select for IL-2-independent (IL-2i) mutants. Southern blot analysis of genomic DNA from these mutants, which was hybridized to a Mo-MuLV long terminal repeat probe, revealed that all mutants carried new provirus insertions (from one to four new proviruses per cell line). A locus of integration identified through cloning of the single new provirus detected in one of the IL-2i mutants, 2780i.5, was found to be the target of provirus insertion in 1 additional IL-2i cell line of 24 tested. A full-length cDNA of a gene (growth factor independence-1 [Gfi-1]) activated by promoter insertion in the 2780i.5 cells was cloned and shown to encode a novel zinc finger protein. Gfi-1 is expressed at low levels in IL-2d cell lines cultured in IL-2-containing medium and at high levels in most IL-2i cell lines, including the two harboring a provirus at this locus. Gfi-1 expression in adult animals is restricted to the thymus, spleen, and testis. In mitogen-stimulated splenocytes, Gfi-1 expression begins to rise at 12 h after stimulation and reaches very high levels after 50 h, suggesting that it may be functionally involved in events occurring after the interaction of IL-2 with its receptor, perhaps during the transition from the G1 to the S phase of the cell cycle. In agreement with this, Gfi-1 does not induce the expression of IL-2. Expression of Gfi-1 in 2780d cells following transfer of a Gfi-1/LXSN retrovirus construct contributes to the emergence of the IL-2i phenotype.  相似文献   

9.
The Chinese hamster ovary cell line CHO-tsH1 is a temperature-sensitive leucyl-tRNA synthetase mutant that shows temperature-dependent regulation of the amino acid transport responsible for accumulating leucine, System L. At nonpermissive temperatures, CHO-tsH1 cells are unable to grow because they are unable to incorporate leucine into protein. As a result, System L activity is increased. We have isolated mutants from CHO-tsH1 that have constitutively de-repressed System L activity. These mutants are temperature-resistant as a result of increased intracellular steady-state accumulations of System L-related amino acids, which compensates for the defective synthetase activity. In this study, we have subjected one of these regulatory mutant cell lines (C11B6) to a tritium-suicide selection, in which L-[3H]leucine was used as a toxic substrate. Three mutant cell lines, C4B4, C5D9, and C9D9 that showed reduced System L transport activity were isolated. The decreases in the initial rates of System L transport activity lead to reduced steady-state accumulations of System L-related amino acids. In contrast to the parental cell line, C11B6, the transport-defective mutants are temperature-sensitive because the reduced intracellular pool of leucine can no longer compensate for the defective synthetase activity.  相似文献   

10.
Idiotype-specific spleen cells from appropriately primed BALB/c mice cause a marked and irreversible suppression of the membrane and secreted forms of idiotype-positive immunoglobulin (Ig) of an antigen-specific B cell hybrid clone (2C3E1). The suppression of this BALB/c B cell line has been observed in vitro and in vivo, and appears to require intimate contact between effector spleen cells and target 2C3E1 cells. The observed suppression in the 2C3E1 cell line is due to an induced mutation or a selection of pre-existing mutants within the 2C3E1 cell population, because the resultant light and heavy chain-loss variants are phenotypically stable in vitro and in vivo in the absence of any further active suppression. Biochemical analysis of the 2C3E1 cells after this suppression indicates that all of the variants are negative for the production of idiotype-positive Ig. Heavy chain synthesis by the variants is almost totally eliminated, and light chain synthesis is decreased by 10 to 90%. Spleen cells from identically primed nude mice do not induce any alteration in the 2C3E1 cell line, suggesting that induction or selection of the heavy and light chain-loss mutants requires the presence of mature T lymphocytes. The generation of idiotype-negative 2C3E1 variants during the period of tumor growth in the spleen (but not elsewhere) may represent one mechanism by which this tumor escapes the host's immune recognition.  相似文献   

11.
The mating reaction in Tetrahymena thermophila includes a starvation period and two distinct cell interactions, co-stimulation and cell pairing, before the cells are cytoplasmically joined as conjugants. A selection procedure for harvesting mutants unable to mate at a restrictive temperature has been developed. A conjugant pair consisting of one cycloheximide-resistant cell and one wild-type cell (cycloheximide-sensitive) was itself sensitive to the drug. By adding cycloheximide and nutrient medium to a cross made at the restrictive and grow. Repetition of the selection procedure enriched for cells unable to conjugate at the restrictive temperature. The selected cells were able to grow at 38 degrees C and could conjugate at 28 degrees C. This procedure may be narrowed to select specifically for cell interaction mutants.  相似文献   

12.
13.
The L5178Y/TK+/? → TK?/? mouse lymphona mutagen assay, which allows selection of forward mutations at the autosomal thymidine kinase (TK) locus, uses a TK+/? heterozygous cell line, TK+/? 3.7.2C. Quantitation of colonies of mutant TK?/? cells in the assay forms the basis for calculations of mutagenic potential of test compounds. We have evaluated the banded karyotypes of the parent TK+/? heterozygous cell line, as well as homozygous TK?/? mutants, in order to relate the genetic and morphological properties of mutant colonies. The parent cell line displays karyotype homogeneity, all cells containing normal mouse chromosomes, readily identifiable chromosome rearrangements, and cell line specific marker chromosomes. Mutant TK?/? colonies of the TK+/? 3.7.2C cell line form a bimodal frequency distribution of colony sizes for most mutagenic or carcinogenic test substances. Large-colony (λ) TK?/? mutants with normal growth kinetics appear karyotypically identical within and among clones and with the TK+/? parental cell line. In contrast, most slow-growing small-colony (σ) TK?/? mutants have readily recognizable chromosome rearrangements involving chromosome 11, which contains the thymidine kinase gene locus. It is possible that the heritable differences in growth kinetics and resultant colony morphology in λ and σ mutants are related to the type of chromosomal damage sustained. Large-colony mutants receive minimal damage, possibly in the form of point mutations at the TK locus, while small-colony mutants receive damage to other genetic functions coordinately with loss of TK activity, implying gross insult to chromosomal material. It seems likely that λ and σ mutants result from 2 different mutational mechanisms that may be distinguished on the basis of mutant colony morphology.  相似文献   

14.
Factors affecting the efficiency of selection of “reverants” of salvage pathway mutants in media containing amethopterin have been examined. Our V79 Chines hamster cell line was found to require a significantly higher level of thymidine for optimal growth in such media than has been reported for other cell lines. Hypoxanthine (but not glycine) was also required for reversal of amethopterin toxicity, but levels did not differ significantly from those reported elsewhere. Growth in HAT was also dependent on plating density and serum batch. Our modification (VHAT) was compared with published HAT recipies in back selection reconstruction experiments. A sharp fall in EOR (efficiency of recovery) of wild type cells from mixtures with mutants at plating densities greater than 3500 cells/cm2 (105 cells/6 cm dish) was observed for VHAT. EOR with other HAT recipes was lower still, and was affected also by the particular mutant used in the mixture.EMS induced “revertants” were isolated from three 8AZr mutants by plating in VHAT. All. revertants were however amethopterin resistant, they were also 8AZ resistant and the mobility of residual HGPRT (as measured by polyacrylamide gel electrophoresis) was similar to that of their 8AZr parents i.e. dissimilar from that in wild type. The modal chromosome number of V79 wild type cells was 21. No significant deviation from this mode was detected in any of the mutant lines examined. The data indicate that the recovery of colonies in HAT from 8AZr mutants does not necessarily indicate that a back mutation in the structural gene for HGPRT has occurred. Thus, the frequency of HAT+ colonies cannot be taken as a direct indication of reversion frequencies.  相似文献   

15.
Stabilizing selection, which favors intermediate phenotypes, is frequently invoked as the selective force maintaining a population's status quo. Two main alternative reasons for stabilizing selection on a quantitative trait are possible: (1) intermediate trait values can be favored through the causal effect of the trait on fitness (direct stabilizing selection); or (2) through a pleiotropic, deleterious side effect on fitness of mutants affecting the trait (apparent stabilizing selection). Up to now, these alternatives have never been experimentally disentangled. Here we measure fitness as a function of the number of abdominal bristles within four Drosophila melanogaster lines, one with high, one with low, and two with intermediate average bristle number. The four were inbred nonsegregating lines, so that apparent selection due to pleiotropy is not possible. Individual fitness significantly increased (decreased) with bristles number in the low (high) line. No significant fitness-trait association was detected within each intermediate line. These results reveal substantial direct stabilizing selection on the trait.  相似文献   

16.
Stable mutants (Dipr), highly resistant to diphtheria toxin have been selected from a sensitive human lymphoblast line. A second human lymphoblast line, HH-4 (and its derivative TK6-1) were found to be highly resistant to diphtheria toxin without any previous selection, suggesting the presence of the Dipr allele in the human population. The resistance of protein synthesis in extracts of mutant cells to diphtheria toxin indicates that the genetic lesion in the resistant lines examined involved an alteration in the protein synthesis. In comparison to sensitive cells, the mutant cell extracts contained reduced (30–40%) levels of ADP-ribosylatable elongation factor-2 activity suggesting that the lesion presumably affects elongation factor-2 in such cells. The biochemical phenotype of these mutants appears similar to that of the DiprIIb class of mutants of Chinese hamster cells (4,6) which behave codominantly in hybrids.  相似文献   

17.
18.
19.
A novel genetic system has been used to demonstrate that a processed adenine phosphoribosyltransferase (Aprt) pseudogene is located on mouse chromosome 8, which is the same chromosome that carries the functional Aprt gene. A restriction fragment length polymorphism associated with the pseudogene was found to segregate concordantly with chromosome 8 in APRT- mutants of a near-diploid cell line that had lost one copy of the chromosome.  相似文献   

20.
The mitochondrial NADH dehydrogenase (complex I) in mammalian cells is a multimeric enzyme consisting of approximately 40 subunits, 7 of which are encoded in mitochondrial DNA (mtDNA). Very little is known about the function of these mtDNA-encoded subunits. In this paper, we describe the efficient isolation from a human cell line of mutants affected in any of these subunits. In the course of analysis of eight mutants of the human cell line VA2B selected for their resistance to high concentrations of the complex I inhibitor rotenone, seven were found to be respiration deficient, and among these, six exhibited a specific defect of complex I. Transfer of mitochondria from these six mutants into human mtDNA-less cells revealed, surprisingly, in all cases a cotransfer of the complex I defect but not of the rotenone resistance. This result indicated that the rotenone resistance resulted from a nuclear mutation, while the respiration defect was produced by an mtDNA mutation. A detailed molecular analysis of the six complex I-deficient mutants revealed that two of them exhibited a frameshift mutation in the ND4 gene, in homoplasmic or in heteroplasmic form, resulting in the complete or partial loss, respectively, of the ND4 subunit; two other mutants exhibited a frameshift mutation in the ND5 gene, in near-homoplasmic or heteroplasmic form, resulting in the ND5 subunit being undetectable or strongly decreased, respectively. It was previously reported (G. Hofhaus and G. Attardi, EMBO J. 12:3043-3048, 1993) that the mutant completely lacking the ND4 subunit exhibited a total loss of NADH:Q1 oxidoreductase activity and a lack of assembly of the mtDNA-encoded subunits of complex I. By contrast, in the mutant characterized in this study in which the ND5 subunit was not detectable and which was nearly totally deficient in complex I activity, the capacity to assemble the mtDNA-encoded subunits of the enzyme was preserved, although with a decreased efficiency or a reduced stability of the assembled complex. The two remaining complex I-deficient mutants exhibited a normal rate of synthesis and assembly of the mtDNA-encoded subunits of the enzyme, and the mtDNA mutation(s) responsible for their NADH dehydrogenase defect remains to be identified. The selection scheme used in this work has proven to be very valuable for the isolation of mutants from the VA2B cell line which are affected in different mtDNA-encoded subunits of complex I and may be applicable to other cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号