首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Zonal electrophoresis in a column stabilized by a density gradient has been applied to the small-scale fractionation of the proteins of the casein complex of cow's milk. 2. The αs- and β-fractions from the milk of individual Ayrshire cows have been shown to behave as single homogeneous proteins on electrophoresis at two pH values in starch gels. 3. The αs-fraction has been found to be indistinguishable from αs-casein prepared by Ca2+ fractionation of the same milk samples. 4. On the evidence of their electrophoretic behaviour in starch gels and their elementary analyses, α1- and αs-casein are concluded to be substantially the same protein.  相似文献   

2.
《Small Ruminant Research》2010,89(2-3):84-88
Casein genes in ruminants are organized in a cluster including αS1-casein (CSN1S1), β-casein (CSN2), αS2-casein (CSN1S2), and κ-casein (CSN3). Considering the results obtained in cattle and goat species concerning the influence of genetic polymorphisms on milk composition, quality, and technological properties, research on the polymorphisms of ewe's milk has known a new impulse in the last decade. A total of 54 samples belonging to the Massese dairy breed, to the double pourpose (milk and meat) Garfagnina population and to the Pomarancina and Zerasca meat populations, reared in the Centre of Italy, were analysed by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). New PCR-SSCP patterns were found in both CSN2 and CSN1S2 genes. Sequencing of the samples carrying the new patterns revealed 2 new variants at CSN2 gene. Frequencies of the 2 variants in the samples analysed were 0.18 and 0.02. The less common variant is characterized by a silent mutation in the triplet coding for Gln192, whereas in the more frequent one a C to A transversion is responsible for the aminoacid exchange Leu196  Ile196. At the CSN1S2 gene only a new variant was found with a frequency of 0.02. The variant is characterized by two linked mutations: a C to G transversion, responsible for the aminoacid change Asn200  Lys200 already described at the protein level, and a T to A transversion at the 14th nucleotide of the 16th intron. The ovine caseins deserve a bigger attention that has to be directed to a complete characterization of the described variants and to the understanding of their functional meaning.  相似文献   

3.
αS-Casein, the major milk protein, comprises αS1- and αS2-casein and acts as a molecular chaperone, stabilizing an array of stressed target proteins against precipitation. Here, we report that αS-casein acts in a similar manner to the unrelated small heat-shock proteins (sHsps) and clusterin in that it does not preserve the activity of stressed target enzymes. However, in contrast to sHsps and clusterin, α-casein does not bind target proteins in a state that facilitates refolding by Hsp70. αS-Casein was also separated into α- and α-casein, and the chaperone abilities of each of these proteins were assessed with amorphously aggregating and fibril-forming target proteins. Under reduction stress, all α-casein species exhibited similar chaperone ability, whereas under heat stress, α-casein was a poorer chaperone. Conversely, αS2-casein was less effective at preventing fibril formation by modified κ-casein, whereas α- and αS1-casein were comparably potent inhibitors. In the presence of added salt and heat stress, αS1-, α- and αS-casein were all significantly less effective. We conclude that αS1- and α-casein stabilise each other to facilitate optimal chaperone activity of αS-casein. This work highlights the interdependency of casein proteins for their structural stability.  相似文献   

4.
1-40 and Aβ1-42 have been shown to be the main components of the amyloid plaques found in the extracellular environment of neurons in Alzheimer’s disease. β-Casein, a milk protein, has been shown to display a remarkable chaperone ability in preventing the aggregation of proteins. In this study, the ability of β-casein to suppress the amyloid fibril formation of Aβ1-42 has been examined through in vitro studies and molecular docking simulation. The results demonstrate the inhibitory effect of β-casein on fibril formation in Aβ1-42, in a concentration dependent manner, suggesting that the chaperone binds to the Aβ1-42 and prevents amyloid fibril formation. Molecular docking results show that the inhibitory effect of the β-casein may be due to binding of the chaperone with the aggregation-prone region of the Aβ1-42 mainly via hydrophobic interactions. β-Casein probably binds to the CHC and C-terminal domain of the Aβ1-42, and stabilizes proteins by inhibiting the conversion of monomeric Aβ1-42 into fibrils. Thus our data suggests that the hydrophobic interactions between β-casein and Aβ1-42 play an important role in the burial of the hydrophobic part of the Aβ1-42. This means that β-casein maybe considered for use in preventing amyloid fibril formation in degenerative diseases such as Alzheimer.  相似文献   

5.

Background

The milk protein αS1-casein was recently reported to induce secretion of proinflammatory cytokines via Toll-like receptor 4 (TLR4). In this study, αS1-casein was identified as binder of theTLR4 ecto domain.

Methods

IL-8 secretion after stimulation of TLR4/MD2 (myeloid differentiation factor 2)/CD14 (cluster of differentiation 14)-transfected HEK293 cells (TLR4+) and Mono Mac 6 cells (MM6) with recombinant αS1-casein, or LPS as control was monitored. Binding of αS1-casein to TLR4 was quantified by microscale thermophoresis (MST).

Results

αS1-casein induced secretion of IL-8 in TLR4+ cells and in MM6 cells with a six-times higher final IL-8 concentration in supernatants. IL-8 secretion was inhibited by intracellular TLR4-domain antagonist TAK-242 with an IC50-value of 259.6?nM, by ecto-domain TLR4 antagonistic mianserin with 10–51?μM and by anti-CD14-IgA. The binding constants (KD) of αS1-casein to the TLR4, MD2, and CD14 were 2.8?μM, 0.3?μM and 2.7?μM, respectively. Finally, αS1-casein showed a higher affinity to TLR4/MD2 (KD: 2.2?μM) compared to LPS (KD: 8.2?μM).

Conclusion

Human αS1-casein induced proinflammatory effects are dependent upon binding to the TLR4 ectodomain and the presence of CD14. αS1-casein displayed stronger TLR4 agonistic activity than LPS via a different mode of action.

General significance

Breast milk protein αS1-casein is a proinflammatory cytokine.  相似文献   

6.
The cell wall proteinase fraction of Streptococcus cremoris HP has been isolated. This preparation did not exhibit any activity due to either specific peptidases known to be located near the outside surface of and in the membrane or intracellular proteolytic enzymes. By using thin-layer chromatography for the detection of relatively small hydrolysis products which remain soluble at pH 4.6, it was shown that β-casein is preferentially attacked by the cell wall proteinase. This was also the case when whole casein or micelles were used as the substrate. κ-casein hydrolysis is a relatively slow process, and αs-casein degradation appeared to proceed at an extremely low rate. These results could be confirmed by using 14CH3-labeled caseins. A relatively fast and linear initial progress of 14CH3-labeled β-casein degradation is not inhibited by αs-casein and only slightly by κ-casein at concentrations of these components which reflect their stoichiometry in the micelles. Possible implications of β-casein degradation for growth of the organism in milk are discussed.  相似文献   

7.
Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. marcescens. P. fragi and E. coli attached in very small numbers to the clear surfaces, making the effect of any adsorbed protein layer difficult to assess. Individual milk proteins α-casein, β-casein, κ-casein, and α-lactalbumin were also found to reduce the adhesion of S. aureus and L. monocytogenes. The adhesion of bacteria to samples treated with milk dilutions up to 0.001% was investigated. X-ray photoelectron spectroscopy was used to determine the proportion of nitrogen in the adsorbed films. Attached bacterial numbers were inversely related to the relative atomic percentage of nitrogen on the surface. A comparison of two types of stainless steel surface, a 2B and a no. 8 mirror finish, indicated that the difference in these levels of surface roughness did not greatly affect bacterial attachment, and reduction in adhesion to a milk-treated surface was still observed. Cross-linking of adsorbed proteins partially reversed the inhibition of bacterial attachment, indicating that protein chain mobility and steric exclusion may be important in this phenomenon.  相似文献   

8.
In an electrophoretic analysis of 198 milk samples from the Massa and Biella breeds of sheep, six different α5-casein phenotypes were observed, of which three have not been reported previously.  相似文献   

9.
Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that αs1-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of αs1-casein in rat mammary epithelial cells. Using metabolic labelling we show that αs1-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of αs1-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of αs1-casein. These experiments reveal that the insolubility of αs1-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of αs1-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells.  相似文献   

10.
《Small Ruminant Research》2010,94(2-3):202-205
Characteristics of α- and β-casein fractions in the milk of Korean-Saanen goats were compared with those of Holstein cow milk using capillary electrophoresis (CE) analysis. The αs1-CN content of the Saanen goat milk samples varied from 2.4% to 9.3% of total proteins. Total αs-CN content of the goat milk varied from 10.1% to 17.0%. Total β-CN content containing β1-CN and the β2-CN varied from 49.6% to 61.0% of total proteins. Average αs-CN to β-CN ratio of the Saanen goat milk from different farms was 0.24 ± 0.04, ranging from 0.17 to 0.33. The αs-CN (αs1-CN + αs0-CN) to β-CN (βA1-CN + βA2-CN) ratio of Holstein cow milk was 0.81, which was much higher than that of Korean-Saanen goat milk. The goat milk samples having more than 1.5 million cells/ml somatic cell counts (SCC) contained higher αs-CNs (P < 0.01) and lower β-CNs (P < 0.05) contents than milks with <1.5 million SCC. This resulted in a higher αs-CN to β-CN ratio (P < 0.01) in the milk with >1.5 million SCC.  相似文献   

11.
Caseins constitute the main protein components in mammalian milk and have critical functions in calcium transport and prevention of protein aggregation. Fibrillation and aggregation of κ-casein, a phenomenon which has only recently been detected, might be associated with malfunctions of milk secretion and amyloidosis phenomena in the mammary glands. This study employs a newly-designed chromatic biomimetic vesicle assay to investigate the occurrence and the parameters affecting membrane interactions of casein aggregates and the contribution of individual casein members to membrane binding. We show that physiological casein colloids exhibit membrane activity, as well as early globular aggregates of κ-casein, a prominent casein isoform. Furthermore, inhibition of κ-casein fibrillation through complexation with αS-casein and β-casein, respectively, was found to go hand in hand with induction of enhanced membrane binding; these data are important in the context of casein biology since in secreted milk κ-casein is found only in assemblies containing also αS-casein and β-casein. The chromatic experiments, complemented by transmission electron microscopy analysis and fluorescence quenching assays, also revealed significantly higher affinity early spherical aggregates of k-casein to anionic phosphatidylglycerol-lipids, as compared to zwitterionic phospholipids. Overall, this study suggests that lipid interactions play important roles in maintaining the essential physiological functions of caseins in mammalian milk.  相似文献   

12.
Partially purified cell wall proteinases of eight strains of Streptococcus cremoris were compared in their action on bovine αs1-, β-, and κ-casein, as visualized by starch gel electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and thin-layer chromatography. Characteristic degradation profiles could be distinguished, from which the occurrence of two proteinases, represented by strain HP and strain AM1, was concluded. The action of the HP-type proteinase P1 (also detectable in strains Wg2, C13, and TR) was established by electrophoretic methods to be directed preferentially towards β-casein. The AM1-type proteinase PIII (also detectable in strain SK11) was also able to degrade β-casein, but at the same time split αs1- and κ-casein more extensively than did PI. Strain FD27 exhibited mainly PI activity but also detectable PIII degradation characteristics. The cell wall proteinase preparation of strain E8 showed low PI as well as low PIII activity. All proteinase preparations produced from κ-casein positively charged degradation products with electrophoretic mobilities similar to those of degradation products released by the action of the milk-clotting enzyme chymosin. The differences between PI and PIII in mode of action, as detected by gel electrophoresis and thin-layer chromatography, were reflected by the courses of the initial degradation of methyl-14C-labeled β-casein and by the effect of αs1- plus κ-casein on these degradations. The results are discussed in the light of previous comparative studies of cell wall proteinases in strains of S. cremoris and with respect to the growth of this organism in milk.  相似文献   

13.
Multiple forms of αs1-casein were identified in the four major ruminant species by structural characterization of the protein fraction. While αs1-casein phenotypes were constituted by a mixture of at least seven molecular forms in ovine and caprine species, there were only two forms in bovine and water buffalo species. In ovine and caprine forms the main component corresponded to the 199-residue-long form, and the deleted proteins differed from the complete one by the absence of peptides 141–148, 110–117, or Gln78, or a combination of such deletions. The deleted segments corresponded to the sequence regions encoded by exons 13 and 16, and by the first triplet of exon 11 (CAG), suggesting that the occurrence of the short protein forms is due to alternative skipping, as previously demonstrated for some caprine and ovine phenotypes. The alternative deletion of Gln78 in αs1-casein, the only form common to the milk of all the species examined and located in a sequence region joining the polar phosphorylation cluster and the hydrophobic C-terminal domain of the protein, may play a functional role in the stabilization of the milk micelle structure.  相似文献   

14.
The lymphocyte stimulation test (LST) facilitates the diagnosis of non-IgE-mediated gastrointestinal food allergies (non-IgE-GI-FAs). However, LSTs require large volumes of blood and prolonged culture durations. Recently, we found that IL2RA mRNA expression in peripheral blood mononuclear cells (PBMCs) of patients with non-IgE-GI-FAs increased after a 24 h stimulation with milk proteins. We designated this gene expression test as the instant peripheral blood allergen stimulation test (iPAST). In this study, we investigated whether other activated T cell-associated genes are superior to IL2RA in the iPAST for the supplementary diagnosis of non-IgE-GI-FAs. After incubating PBMCs with milk proteins for 24 h, the mRNA levels of three genes, LRRC32, TNFRSF4, and CD69, were assessed using quantitative RT-PCR. The diagnostic significance of the mRNA expression was evaluated by analyzing the receiver operating characteristic (ROC) curve. Upon stimulation with α-casein, κ-casein, α-lactalbumin, or a mixture of four milk protein components (Pmix), LRRC32 expression in the PBMCs of 16 patients with non-IgE-GI-FAs was found to be higher than that in their 17 control counterparts, whereas TNFRSF4 and CD69 levels remained unaltered. Except for β-lactoglobulin and cow’s milk (CM), the area under the ROC curve (AUC) for LRRC32 mRNA expression upon stimulation was >0.7, which validated the diagnostic ability of this test. Notably, α-casein and Pmix had higher AUC scores of 0.820 and 0.842, respectively, than other antigens. iPAST assessed by LRRC32 as well as IL2RA may be useful for the supplementary diagnosis of non-IgE-GI-FAs as an alternative to LSTs and provide insight into the pathogenesis of non-IgE-GI-FAs.  相似文献   

15.
Turbidity measurements have been used to study the calcium-induced precipitation of α31-casein whose amino groups have been modified by reaction with dansyl chloride and fluorescamine. Provided account is taken of the change in charge wrought by these modifications, the precipitation behaviour of these modified caseins is shown to be no different from that of the native αs1-casein protein. The results provide further support for the previously suggested isoelectric precipitation model for this reaction.  相似文献   

16.
The production and consumption of mare’s milk in Europe has gained importance, mainly based on positive health effects and a lower allergenic potential as compared to cows’ milk. The allergenicity of milk is to a certain extent affected by different genetic variants. In classical dairy species, much research has been conducted into the genetic variability of milk proteins, but the knowledge in horses is scarce. Here, we characterize two major forms of equine αS2-casein arising from genomic 1.3 kb in-frame deletion involving two coding exons, one of which represents an equid specific duplication. Findings at the DNA-level have been verified by cDNA sequencing from horse milk of mares with different genotypes. At the protein-level, we were able to show by SDS-page and in-gel digestion with subsequent LC-MS analysis that both proteins are actually expressed. The comparison with published sequences of other equids revealed that the deletion has probably occurred before the ancestor of present-day asses and zebras diverged from the horse lineage.  相似文献   

17.

Background

Milk proteins are required to proceed through a variety of conditions of radically varying pH, which are not identical across mammalian digestive systems. We wished to investigate if the shifts in these requirements have resulted in marked changes in the isoelectric point and charge of milk proteins during evolution.

Results

We investigated nine major milk proteins in 13 mammals. In comparison with a group of orthologous non-milk proteins, we found that 3 proteins κ-casein, lactadherin, and muc1 have undergone the highest change in isoelectric point during evolution. The pattern of non-synonymous substitutions indicate that selection has played a role in the isoelectric point shift, since residues that show significant evidence of positive selection are much more likely to be charged (p = 0.03 for κ-casein; p < 10-8 for muc1). However, this selection does not appear to be solely due to adaptation to the diversity of mammalian digestive systems, since striking changes are seen among species that resemble each other in terms of their digestion.

Conclusion

The changes in charge are most likely due to changes of other protein functions, rather than an adaptation to the different mammalian digestive systems. These functions may include differences in bioactive peptide releases in the gut between different mammals, which are known to be a major contributing factor in the functional and nutritional value of mammalian milk. This raises the question of whether bovine milk is optimal in terms of particular protein functions, for human nutrition and possibly disease resistance. This article was reviewed by Fyodor Kondrashov, David Liberles (nominated by David Ardell), and Christophe Lefevre (nominated by Mark Ragan).  相似文献   

18.
An interesting and quite complex protein pattern has been described at ovine milk proteins but the genetic control of the variation observed was assessed only in few cases. The aim of this work was to characterize the ovine α s2 -casein (CSN1S2) B variant, first observed in the Italian Gentile di Puglia, a fine-wooled ovine breed, and to investigate its occurrence in two further breeds, the Sarda and Camosciata, which are the most widespread dairy breeds in Italy. The B variant differs from the most common form A with two amino acid exchanges: Asp75 → Tyr75 and Ile105 → Val105. The first substitution, resulting in a loss of a negative charge, is responsible for the higher isoelectric point of the B protein variant, which allows its detection by isoelectric focusing electrophoresis (IEF). The occurrence of CSN1S2*B in Sarda and Comisana was demonstrated. Since the Asp75 → Tyr75 substitution modifies the protein electric charge, milk properties may result affected to some extent.  相似文献   

19.
Genotyping of Kazakh camels Camelus dromedarius (milk breed) (n = 18) and Camelus bactrianus (meat breed) (n = 18) by alpha-S1-casein (αs1-CN) and kappa-casein (κ-CN) loci was conducted using the PCR–RFLP analysis method. A new pair of primers was suggested for the amplification of the CSN3 gene fragment with subsequent cleavage of the reaction products by AluI restriction endonuclease in order to identify the gene genetic variants. DNA polymorphism was detected only for the kappa-casein locus; no genetic polymorphism for alpha-S1-casein gene was found in the studied populations. Analysis of the results of DNA fingerprinting demonstrated that the band sharing (BS) coefficient between the groups was low enough (0.13), and the genetic distance (D) between Dromedary and Bactrian breeds was 0.305. The results of genotyping of Bactrian and Dromedary Kazakh camel breeds by alpha-S1-casein, kappa-casein loci, and DNA fingerprinting indicate that the Dromedary breed female camels are more polymorphic as compared with Bactrian.  相似文献   

20.
A ruminant mammary cell culture that accurately reproduces mammary function in vitro would be a valuable tool in studies of ruminant lactation, With this in mind, we have examined milk protein synthesis and secretion, milk protein mRNA abundance, and hormonal responsiveness in primary cultures of mammary acini from lecturing sheep. α- and β-casein protein synthesis, β-lactoglobulin synthesis, and α-casein, β-casein, and β-lactoglobulin secretion are maintained at high levels for 8 h in culture, but then decline to approximately 25% of maximal rates between 8 and 24 h in culture, whereas synthesis of other proteins remains unaltered. The relative abundance of α-S1-casein, β-lactoglobulin, and α-lactalbumin mRNAs similarly decline between 8 and 24 h in culture. Extracellular labeled α-casein is increased fourfold in the presence of fetal calf serum (FCS). In total, FCS alters the abundance of 47 of 68 secreted proteins detected by two-dimensional electrophoresis. However, FCS and lactogenic/galactopoietic hormones had no effect on the rate of decline of mammary function and did not promote any regaining of function when present for up to 9 days in culture. These results suggest that providing its limitations are recognized, this primary cell culture system may be useful in studying some aspects of ruminant mammary function in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号